应用naÏve贝叶斯分类器方法进行数据挖掘,分析冰淇淋混合物的顾客满意度水平

Anita Anita, Deslin Fitri Y. Lumban Gaol, Meta Doner Septia Sipayung
{"title":"应用naÏve贝叶斯分类器方法进行数据挖掘,分析冰淇淋混合物的顾客满意度水平","authors":"Anita Anita, Deslin Fitri Y. Lumban Gaol, Meta Doner Septia Sipayung","doi":"10.34012/jurnalsisteminformasidanilmukomputer.v7i1.4035","DOIUrl":null,"url":null,"abstract":"Ice Cream Mixue is a company engaged in the production of beverages and food. They provide a wide range of ice cream flavors with premium quality and natural ingredients, attracting many customers' attention. This study uses a quantitative method because the data sources are apparent. The research method is a scientific way to obtain data with specific purposes and uses. The technique used is the Naïve Bayes Classifier Algorithm with rapidminer results. 356 customers answered the questionnaire results satisfied, 64 customers who answered the questionnaire results were neutral, and 80 customers responded to the questionnaire results and were not happy. In this case, the Naïve Bayes Classifier Method can predict the level of customer satisfaction for ice cream mixes using the Rapidminer Application with Satisfied Words. This analysis obtained Class Precision satisfaction results of 94.72%, pred. neutral 2.0%, and pred. They are dissatisfied by 4%.","PeriodicalId":499639,"journal":{"name":"Jusikom : Jurnal Sistem Informasi Ilmu Komputer","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"APPLICATION OF DATA MINING USING THE NAÏVE BAYES CLASSIFIER METHOD TO ANALYZE THE LEVEL OF CUSTOMER SATISFACTION IN ICE CREAM MIXUE\",\"authors\":\"Anita Anita, Deslin Fitri Y. Lumban Gaol, Meta Doner Septia Sipayung\",\"doi\":\"10.34012/jurnalsisteminformasidanilmukomputer.v7i1.4035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ice Cream Mixue is a company engaged in the production of beverages and food. They provide a wide range of ice cream flavors with premium quality and natural ingredients, attracting many customers' attention. This study uses a quantitative method because the data sources are apparent. The research method is a scientific way to obtain data with specific purposes and uses. The technique used is the Naïve Bayes Classifier Algorithm with rapidminer results. 356 customers answered the questionnaire results satisfied, 64 customers who answered the questionnaire results were neutral, and 80 customers responded to the questionnaire results and were not happy. In this case, the Naïve Bayes Classifier Method can predict the level of customer satisfaction for ice cream mixes using the Rapidminer Application with Satisfied Words. This analysis obtained Class Precision satisfaction results of 94.72%, pred. neutral 2.0%, and pred. They are dissatisfied by 4%.\",\"PeriodicalId\":499639,\"journal\":{\"name\":\"Jusikom : Jurnal Sistem Informasi Ilmu Komputer\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jusikom : Jurnal Sistem Informasi Ilmu Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v7i1.4035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jusikom : Jurnal Sistem Informasi Ilmu Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v7i1.4035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

雪糕蜜雪是一家从事饮料和食品生产的公司。他们提供各种口味的冰淇淋,优质和天然的成分,吸引了许多顾客的注意。由于数据来源明显,本研究采用定量方法。研究方法是一种获取具有特定目的和用途的数据的科学方法。使用的技术是Naïve贝叶斯分类器算法,具有快速挖掘结果。356名顾客回答问卷结果满意,64名顾客回答问卷结果一般,80名顾客回答问卷结果不满意。在这种情况下,Naïve贝叶斯分类器方法可以使用带有满意词的Rapidminer应用程序来预测冰淇淋混合物的客户满意度水平。该分析获得了94.72%的类精密度满意结果。中性2.0%,利率为零。4%的人不满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
APPLICATION OF DATA MINING USING THE NAÏVE BAYES CLASSIFIER METHOD TO ANALYZE THE LEVEL OF CUSTOMER SATISFACTION IN ICE CREAM MIXUE
Ice Cream Mixue is a company engaged in the production of beverages and food. They provide a wide range of ice cream flavors with premium quality and natural ingredients, attracting many customers' attention. This study uses a quantitative method because the data sources are apparent. The research method is a scientific way to obtain data with specific purposes and uses. The technique used is the Naïve Bayes Classifier Algorithm with rapidminer results. 356 customers answered the questionnaire results satisfied, 64 customers who answered the questionnaire results were neutral, and 80 customers responded to the questionnaire results and were not happy. In this case, the Naïve Bayes Classifier Method can predict the level of customer satisfaction for ice cream mixes using the Rapidminer Application with Satisfied Words. This analysis obtained Class Precision satisfaction results of 94.72%, pred. neutral 2.0%, and pred. They are dissatisfied by 4%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
COMPARISON OF SUPPORT VECTOR REGRESSION AND RANDOM FOREST REGRESSION ALGORITHMS ON GOLD PRICE PREDICTIONS DECISION SUPPORT SYSTEM IMPLEMENTATION IN DETERMINING STUDENTS TO RECEIVE BOS FUNDING USING THE WASPAS METHOD APPLICATION OF THE K-MEANS CLUSTERING METHOD FOR PERFORMANCE ASSESSMENT BASED ON EDUCATOR COMPETENCE WEBSITE-BASED LIBRARY DATA PROCESSING DESIGN USE OF COMPUTER-BASED EDUCATIONAL MEDIA TO IMPROVE THE LEARNING ABILITY OF INDUSTRIAL ENGINEERING STUDENTS IN CHEMISTRY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1