{"title":"非定常MHD碳纳米管-血液纳米流体在粘性耗散、电阻加热和热辐射影响下的流动和传热","authors":"","doi":"10.56042/ijpap.v61i10.3592","DOIUrl":null,"url":null,"abstract":"The numerical scrutiny of unsteady incompressible magneto-hydrodynamics (MHD) for blood flow in carbon nano tubes (CNTs), past a sensor surface has been presented under the influences of viscous dissipation, resistive heating, and thermal radiation. The variables without having dimensions have been deployed to alter the reigning flow equations, which are non-linear, coupled partial differential equations (PDEs), into the system of non-linear coupled ordinary differential equations (ODEs). The bvp4c tool of MATLAB software has been exercised to obtain the numerical solutions of the dimensionless governing system. The graphs and tables have been formed for the SWCNT-blood and MWCNT-blood nano-liquids for the velocity and temperature profiles versus the unsteadiness parameter, magnetic parameter, magnetic field inclination angle, radiation parameter, and Eckert number. It has been observed that the velocity profile of MWCNT-blood nanofluid is higher than the velocity profile of SWCNT-blood nanofluid except for radiation parameter and Eckert number. However, a reverse trend has been noted for temperature profiles for both nanofluids for all other governing parameters. The comparison tables, for the values of the local skin friction factor and the local Nusselt number, for the various governing parameters, match with outcomes of the previously reported data and validate the employed technique for the solution.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsteady MHD CNTs-blood Nanofluid Flow and Heat Transfer under the Effects of Viscous Dissipation, Resistive heating, and Thermal Radiation over a Sensor Surface Accompanied by Variable Viscosity\",\"authors\":\"\",\"doi\":\"10.56042/ijpap.v61i10.3592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The numerical scrutiny of unsteady incompressible magneto-hydrodynamics (MHD) for blood flow in carbon nano tubes (CNTs), past a sensor surface has been presented under the influences of viscous dissipation, resistive heating, and thermal radiation. The variables without having dimensions have been deployed to alter the reigning flow equations, which are non-linear, coupled partial differential equations (PDEs), into the system of non-linear coupled ordinary differential equations (ODEs). The bvp4c tool of MATLAB software has been exercised to obtain the numerical solutions of the dimensionless governing system. The graphs and tables have been formed for the SWCNT-blood and MWCNT-blood nano-liquids for the velocity and temperature profiles versus the unsteadiness parameter, magnetic parameter, magnetic field inclination angle, radiation parameter, and Eckert number. It has been observed that the velocity profile of MWCNT-blood nanofluid is higher than the velocity profile of SWCNT-blood nanofluid except for radiation parameter and Eckert number. However, a reverse trend has been noted for temperature profiles for both nanofluids for all other governing parameters. The comparison tables, for the values of the local skin friction factor and the local Nusselt number, for the various governing parameters, match with outcomes of the previously reported data and validate the employed technique for the solution.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56042/ijpap.v61i10.3592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56042/ijpap.v61i10.3592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unsteady MHD CNTs-blood Nanofluid Flow and Heat Transfer under the Effects of Viscous Dissipation, Resistive heating, and Thermal Radiation over a Sensor Surface Accompanied by Variable Viscosity
The numerical scrutiny of unsteady incompressible magneto-hydrodynamics (MHD) for blood flow in carbon nano tubes (CNTs), past a sensor surface has been presented under the influences of viscous dissipation, resistive heating, and thermal radiation. The variables without having dimensions have been deployed to alter the reigning flow equations, which are non-linear, coupled partial differential equations (PDEs), into the system of non-linear coupled ordinary differential equations (ODEs). The bvp4c tool of MATLAB software has been exercised to obtain the numerical solutions of the dimensionless governing system. The graphs and tables have been formed for the SWCNT-blood and MWCNT-blood nano-liquids for the velocity and temperature profiles versus the unsteadiness parameter, magnetic parameter, magnetic field inclination angle, radiation parameter, and Eckert number. It has been observed that the velocity profile of MWCNT-blood nanofluid is higher than the velocity profile of SWCNT-blood nanofluid except for radiation parameter and Eckert number. However, a reverse trend has been noted for temperature profiles for both nanofluids for all other governing parameters. The comparison tables, for the values of the local skin friction factor and the local Nusselt number, for the various governing parameters, match with outcomes of the previously reported data and validate the employed technique for the solution.