{"title":"用空间关键字查询处理丰富区块链","authors":"Muhammad Kashif Azhar, Bin Yao, Zhongpu Chen","doi":"10.1504/ijics.2023.133369","DOIUrl":null,"url":null,"abstract":"Recently, after successfully revolutionising financial services, blockchain is now transforming a variety of other domains. However, current working abstraction requires technology to have more maturity from several key perspectives, and linear data processing is one of them. Blockchain, with its core characteristics like immutability, traceability, and decentralisation, has the potential to support various types of data. Currently, we find this design an ideal model to support spatial data structures, which, to the best of our knowledge, is a novel feature. We lead this opportunity to enrich blockchain with efficient spatial keyword data. We introduce spatial keyword index for block (SKIB), which is a cryptographically signed tree, thus maintaining the storage and integrity of original data from its spatial topological contexts. To demonstrate our work, we implement both textual first and spatial first pruning techniques. The comprehensive evaluation shows that SKIB provides efficient spatial keyword data processing on blockchains.","PeriodicalId":53652,"journal":{"name":"International Journal of Information and Computer Security","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enriching blockchain with spatial keyword query processing\",\"authors\":\"Muhammad Kashif Azhar, Bin Yao, Zhongpu Chen\",\"doi\":\"10.1504/ijics.2023.133369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, after successfully revolutionising financial services, blockchain is now transforming a variety of other domains. However, current working abstraction requires technology to have more maturity from several key perspectives, and linear data processing is one of them. Blockchain, with its core characteristics like immutability, traceability, and decentralisation, has the potential to support various types of data. Currently, we find this design an ideal model to support spatial data structures, which, to the best of our knowledge, is a novel feature. We lead this opportunity to enrich blockchain with efficient spatial keyword data. We introduce spatial keyword index for block (SKIB), which is a cryptographically signed tree, thus maintaining the storage and integrity of original data from its spatial topological contexts. To demonstrate our work, we implement both textual first and spatial first pruning techniques. The comprehensive evaluation shows that SKIB provides efficient spatial keyword data processing on blockchains.\",\"PeriodicalId\":53652,\"journal\":{\"name\":\"International Journal of Information and Computer Security\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information and Computer Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijics.2023.133369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information and Computer Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijics.2023.133369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Enriching blockchain with spatial keyword query processing
Recently, after successfully revolutionising financial services, blockchain is now transforming a variety of other domains. However, current working abstraction requires technology to have more maturity from several key perspectives, and linear data processing is one of them. Blockchain, with its core characteristics like immutability, traceability, and decentralisation, has the potential to support various types of data. Currently, we find this design an ideal model to support spatial data structures, which, to the best of our knowledge, is a novel feature. We lead this opportunity to enrich blockchain with efficient spatial keyword data. We introduce spatial keyword index for block (SKIB), which is a cryptographically signed tree, thus maintaining the storage and integrity of original data from its spatial topological contexts. To demonstrate our work, we implement both textual first and spatial first pruning techniques. The comprehensive evaluation shows that SKIB provides efficient spatial keyword data processing on blockchains.