Afsal Pulikkathodi, Elisabeth Lacazedieu, Ludovic Chamoin, Juan Pedro Berro Ramirez, Laurent Rota, Malek Zarroug
{"title":"基于神经网络的点焊板碰撞数据驱动局部建模","authors":"Afsal Pulikkathodi, Elisabeth Lacazedieu, Ludovic Chamoin, Juan Pedro Berro Ramirez, Laurent Rota, Malek Zarroug","doi":"10.1051/meca/2023029","DOIUrl":null,"url":null,"abstract":"Solving large structural problems with multiple complex localized behaviors is extremely challenging. To address this difficulty, both intrusive and non-intrusive Domain Decomposition Methods (DDM) have been developed in the past, where the refined model (local) is solved separately in its own space and time scales. In this work, the Finite Element Method (FEM) at the local scale is replaced with a data-driven Reduced Order Model (ROM) to further decrease computational time. The reduced model aims to create a low-cost, accurate and efficient mapping from interface velocities to interface forces and enable the prediction of their time evolution. The present work proposes a modeling technique based on the Physics-Guided Architecture of Neural Networks (PGANNs), which incorporates physical variables other than input/output variables into the neural network architecture. We develop this approach on a 2D plate with a hole as well as a 3D case with spot-welded plates undergoing fast deformation, representing nonlinear elastoplasticity problems. Neural networks are trained using simulation data generated by explicit dynamic FEM solvers. The PGANN results are in good agreement with the FEM solutions for both test cases, including those in the training dataset as well as the unseen dataset, given the loading type is present in the training set.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":"67 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A neural network-based data-driven local modeling of spotwelded plates under impact\",\"authors\":\"Afsal Pulikkathodi, Elisabeth Lacazedieu, Ludovic Chamoin, Juan Pedro Berro Ramirez, Laurent Rota, Malek Zarroug\",\"doi\":\"10.1051/meca/2023029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solving large structural problems with multiple complex localized behaviors is extremely challenging. To address this difficulty, both intrusive and non-intrusive Domain Decomposition Methods (DDM) have been developed in the past, where the refined model (local) is solved separately in its own space and time scales. In this work, the Finite Element Method (FEM) at the local scale is replaced with a data-driven Reduced Order Model (ROM) to further decrease computational time. The reduced model aims to create a low-cost, accurate and efficient mapping from interface velocities to interface forces and enable the prediction of their time evolution. The present work proposes a modeling technique based on the Physics-Guided Architecture of Neural Networks (PGANNs), which incorporates physical variables other than input/output variables into the neural network architecture. We develop this approach on a 2D plate with a hole as well as a 3D case with spot-welded plates undergoing fast deformation, representing nonlinear elastoplasticity problems. Neural networks are trained using simulation data generated by explicit dynamic FEM solvers. The PGANN results are in good agreement with the FEM solutions for both test cases, including those in the training dataset as well as the unseen dataset, given the loading type is present in the training set.\",\"PeriodicalId\":49018,\"journal\":{\"name\":\"Mechanics & Industry\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics & Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/meca/2023029\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics & Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/meca/2023029","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A neural network-based data-driven local modeling of spotwelded plates under impact
Solving large structural problems with multiple complex localized behaviors is extremely challenging. To address this difficulty, both intrusive and non-intrusive Domain Decomposition Methods (DDM) have been developed in the past, where the refined model (local) is solved separately in its own space and time scales. In this work, the Finite Element Method (FEM) at the local scale is replaced with a data-driven Reduced Order Model (ROM) to further decrease computational time. The reduced model aims to create a low-cost, accurate and efficient mapping from interface velocities to interface forces and enable the prediction of their time evolution. The present work proposes a modeling technique based on the Physics-Guided Architecture of Neural Networks (PGANNs), which incorporates physical variables other than input/output variables into the neural network architecture. We develop this approach on a 2D plate with a hole as well as a 3D case with spot-welded plates undergoing fast deformation, representing nonlinear elastoplasticity problems. Neural networks are trained using simulation data generated by explicit dynamic FEM solvers. The PGANN results are in good agreement with the FEM solutions for both test cases, including those in the training dataset as well as the unseen dataset, given the loading type is present in the training set.
期刊介绍:
An International Journal on Mechanical Sciences and Engineering Applications
With papers from industry, Research and Development departments and academic institutions, this journal acts as an interface between research and industry, coordinating and disseminating scientific and technical mechanical research in relation to industrial activities.
Targeted readers are technicians, engineers, executives, researchers, and teachers who are working in industrial companies as managers or in Research and Development departments, technical centres, laboratories, universities, technical and engineering schools. The journal is an AFM (Association Française de Mécanique) publication.