热蒸发法制备碲化铋薄膜及其电学性能

Pub Date : 2023-01-01 DOI:10.56042/ijpap.v61i9.4405
{"title":"热蒸发法制备碲化铋薄膜及其电学性能","authors":"","doi":"10.56042/ijpap.v61i9.4405","DOIUrl":null,"url":null,"abstract":"Thin films have received great attention in recent years because of their extensive applications in various fields of science and technology. The studies of the electrical properties of semiconducting thin films have been primarily provoked by attractive micro-electronic device applications. Bismuth Telluride (Bi2Te3) is the most widely used material among the various V- VI compounds. In this study, thin films of Bi2Te3 were fabricated onto different substrates (i.e., glass and silica) by using thermal evaporation technique. Their structural, morphological, optical, and electrical properties were investigated using X-ray diffraction (XRD), Field Emission-Scanning Electron Microscopy (FE-SEM), Photoluminescence (PL) spectroscopy, and Source meter instrument, respectively. XRD analysis showed that the films were crystalline in nature. FE-SEM images showed that the films have a homogenous and compact grain surface. The optical band gap was about 2 eV for both types of film. The I-V characteristics of thin films were analysed at temperatures ranging from 30 °C to 100 °C. It was found that the film fabricated onto silica substrates showed large electrical conductivity as compared to the others. Also, the increment in electrical conductivity was observed with the temperature indicating that the prepared films have a negative temperature coefficient of resistance.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of Bismuth Telluride Thin Films using Thermal Evaporation Technique and its Electrical Properties\",\"authors\":\"\",\"doi\":\"10.56042/ijpap.v61i9.4405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thin films have received great attention in recent years because of their extensive applications in various fields of science and technology. The studies of the electrical properties of semiconducting thin films have been primarily provoked by attractive micro-electronic device applications. Bismuth Telluride (Bi2Te3) is the most widely used material among the various V- VI compounds. In this study, thin films of Bi2Te3 were fabricated onto different substrates (i.e., glass and silica) by using thermal evaporation technique. Their structural, morphological, optical, and electrical properties were investigated using X-ray diffraction (XRD), Field Emission-Scanning Electron Microscopy (FE-SEM), Photoluminescence (PL) spectroscopy, and Source meter instrument, respectively. XRD analysis showed that the films were crystalline in nature. FE-SEM images showed that the films have a homogenous and compact grain surface. The optical band gap was about 2 eV for both types of film. The I-V characteristics of thin films were analysed at temperatures ranging from 30 °C to 100 °C. It was found that the film fabricated onto silica substrates showed large electrical conductivity as compared to the others. Also, the increment in electrical conductivity was observed with the temperature indicating that the prepared films have a negative temperature coefficient of resistance.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56042/ijpap.v61i9.4405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56042/ijpap.v61i9.4405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,薄膜因其在各个科学技术领域的广泛应用而受到人们的广泛关注。半导体薄膜电性能的研究主要是由微电子器件的应用引起的。碲化铋(Bi2Te3)是各种V- VI化合物中应用最广泛的材料。在本研究中,利用热蒸发技术在不同的衬底(即玻璃和二氧化硅)上制备了Bi2Te3薄膜。分别用x射线衍射仪(XRD)、场发射扫描电镜(FE-SEM)、光致发光仪(PL)和源仪表对其结构、形态、光学和电学性能进行了研究。XRD分析表明,膜的性质为结晶。FE-SEM图像显示,薄膜具有均匀致密的晶粒表面。两种薄膜的光学带隙都在2ev左右。在30°C至100°C的温度范围内分析了薄膜的I-V特性。结果表明,在硅基上制备的薄膜具有较高的导电性。此外,电导率随温度的升高而增加,表明制备的薄膜具有负的电阻温度系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Fabrication of Bismuth Telluride Thin Films using Thermal Evaporation Technique and its Electrical Properties
Thin films have received great attention in recent years because of their extensive applications in various fields of science and technology. The studies of the electrical properties of semiconducting thin films have been primarily provoked by attractive micro-electronic device applications. Bismuth Telluride (Bi2Te3) is the most widely used material among the various V- VI compounds. In this study, thin films of Bi2Te3 were fabricated onto different substrates (i.e., glass and silica) by using thermal evaporation technique. Their structural, morphological, optical, and electrical properties were investigated using X-ray diffraction (XRD), Field Emission-Scanning Electron Microscopy (FE-SEM), Photoluminescence (PL) spectroscopy, and Source meter instrument, respectively. XRD analysis showed that the films were crystalline in nature. FE-SEM images showed that the films have a homogenous and compact grain surface. The optical band gap was about 2 eV for both types of film. The I-V characteristics of thin films were analysed at temperatures ranging from 30 °C to 100 °C. It was found that the film fabricated onto silica substrates showed large electrical conductivity as compared to the others. Also, the increment in electrical conductivity was observed with the temperature indicating that the prepared films have a negative temperature coefficient of resistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1