LongCGDroid:通过机器学习和深度学习的纵向研究来检测Android恶意软件

IF 0.9 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Jordanian Journal of Computers and Information Technology Pub Date : 2023-01-01 DOI:10.5455/jjcit.71-1693392249
Abdelhak Mesbah, Ibtihel Baddari, Mohamed Raihla
{"title":"LongCGDroid:通过机器学习和深度学习的纵向研究来检测Android恶意软件","authors":"Abdelhak Mesbah, Ibtihel Baddari, Mohamed Raihla","doi":"10.5455/jjcit.71-1693392249","DOIUrl":null,"url":null,"abstract":"This study aims to compare the longitudinal performance between machine learning and deep learning classifiers for Android malware detection, employing different levels of feature abstraction. Using a dataset of 200k Android apps labeled by date within a 10-year range (2013-2022), we propose the LongCGDroid, an image-based effective approach for Android malware detection. We use the semantic Call Graph API representation that is derived from the Control Flow Graph and Data Flow Graph to extract abstracted API calls. Thus, we evaluate the longitudinal performance of LongCGDroid against API changes. Different models are used, machine learning models (LR, RF, KNN, SVM) and deep learning models (CNN, RNN). Empirical experiments demonstrate a progressive decline in performance for all classifiers when evaluated on samples from later periods. Whereas, the deep learning CNN model under the class abstraction maintains a certain stability over time. In comparison with eight state-of-the-art approaches, LongCGDroid achieves higher accuracy.","PeriodicalId":36757,"journal":{"name":"Jordanian Journal of Computers and Information Technology","volume":"2 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LongCGDroid: Android malware detection through longitudinal study for machine learning and deep learning\",\"authors\":\"Abdelhak Mesbah, Ibtihel Baddari, Mohamed Raihla\",\"doi\":\"10.5455/jjcit.71-1693392249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to compare the longitudinal performance between machine learning and deep learning classifiers for Android malware detection, employing different levels of feature abstraction. Using a dataset of 200k Android apps labeled by date within a 10-year range (2013-2022), we propose the LongCGDroid, an image-based effective approach for Android malware detection. We use the semantic Call Graph API representation that is derived from the Control Flow Graph and Data Flow Graph to extract abstracted API calls. Thus, we evaluate the longitudinal performance of LongCGDroid against API changes. Different models are used, machine learning models (LR, RF, KNN, SVM) and deep learning models (CNN, RNN). Empirical experiments demonstrate a progressive decline in performance for all classifiers when evaluated on samples from later periods. Whereas, the deep learning CNN model under the class abstraction maintains a certain stability over time. In comparison with eight state-of-the-art approaches, LongCGDroid achieves higher accuracy.\",\"PeriodicalId\":36757,\"journal\":{\"name\":\"Jordanian Journal of Computers and Information Technology\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordanian Journal of Computers and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5455/jjcit.71-1693392249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordanian Journal of Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/jjcit.71-1693392249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在比较机器学习和深度学习分类器在Android恶意软件检测中的纵向性能,采用不同级别的特征抽象。利用20万个Android应用程序的数据集(按日期标注,时间跨度为10年(2013-2022)),我们提出了一种基于图像的Android恶意软件检测方法LongCGDroid。我们使用从控制流图和数据流图派生的语义调用图API表示来提取抽象的API调用。因此,我们根据API的变化来评估LongCGDroid的纵向性能。使用了不同的模型,机器学习模型(LR, RF, KNN, SVM)和深度学习模型(CNN, RNN)。经验实验表明,当对后期的样本进行评估时,所有分类器的性能都会逐渐下降。而类抽象下的深度学习CNN模型则随着时间的推移保持一定的稳定性。与八种最先进的方法相比,LongCGDroid具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LongCGDroid: Android malware detection through longitudinal study for machine learning and deep learning
This study aims to compare the longitudinal performance between machine learning and deep learning classifiers for Android malware detection, employing different levels of feature abstraction. Using a dataset of 200k Android apps labeled by date within a 10-year range (2013-2022), we propose the LongCGDroid, an image-based effective approach for Android malware detection. We use the semantic Call Graph API representation that is derived from the Control Flow Graph and Data Flow Graph to extract abstracted API calls. Thus, we evaluate the longitudinal performance of LongCGDroid against API changes. Different models are used, machine learning models (LR, RF, KNN, SVM) and deep learning models (CNN, RNN). Empirical experiments demonstrate a progressive decline in performance for all classifiers when evaluated on samples from later periods. Whereas, the deep learning CNN model under the class abstraction maintains a certain stability over time. In comparison with eight state-of-the-art approaches, LongCGDroid achieves higher accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jordanian Journal of Computers and Information Technology
Jordanian Journal of Computers and Information Technology Computer Science-Computer Science (all)
CiteScore
3.10
自引率
25.00%
发文量
19
期刊最新文献
OPTIMAL ENERGY CONSUMPTION AND COST PERFORMANCE SOLUTION WITH DELAY CONSTRAINTS ON FOG COMPUTING ORTHOGONAL REGRESSED STEEPEST DESCENT DEEP PERCEPTIVE NEURAL LEARNING FOR IoT- AWARE SECURED BIG DATA COMMUNICATION AUTOMATIC DETECTION OF PNEUMONIA USING CONCATENATED CONVOLUTIONAL NEURAL NETWORK DESIGN OF A COMPACT BROADBAND ANTENNA USING CHARACTERISTIC MODE ANALYSIS FOR MICROWAVE APPLICATIONS Effectiveness of zero-shot models in automatic Arabic Poem generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1