利用回归分析预测南佩西锡尔地区的电力负荷

Elektron Pub Date : 2023-06-27 DOI:10.30630/eji.15.1.340
Zulka Hendri, Efendi Efendi, Junaidi Asrul, Fitriadi Fitriadi
{"title":"利用回归分析预测南佩西锡尔地区的电力负荷","authors":"Zulka Hendri, Efendi Efendi, Junaidi Asrul, Fitriadi Fitriadi","doi":"10.30630/eji.15.1.340","DOIUrl":null,"url":null,"abstract":"The more electric vehicles emerge, the more electricity demand will increase in each region. This will encourage electricity providers to increase the number or capacity of generators. The construction of a new power plant requires load forecasting to determine how much capacity the plant will build. This study aims to predict the electrical load in Pesisir Selatan, West Sumatra until 2031 using linear regression analysis and time series. Forecasting is done on each sector of PLN customers. Forecasting is done based on the PLN customer sector. The forecasting sectors are the household, business, social and government sectors. The four test criteria were carried out are namely the coefficient of determination test (R2), the F test, the T test and the mean absolute percentage error (MAPE). The forecasting results show that in 2031 the electricity load for the household sector is 120.1 MW, the business sector is 5.7 MW, the social sector is 56.9 MW and the government is 9.5 MW.","PeriodicalId":34872,"journal":{"name":"Elektron","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peramalan Beban Listrik Kabupaten Pesisir Selatan Dengan Analisis Regresi\",\"authors\":\"Zulka Hendri, Efendi Efendi, Junaidi Asrul, Fitriadi Fitriadi\",\"doi\":\"10.30630/eji.15.1.340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The more electric vehicles emerge, the more electricity demand will increase in each region. This will encourage electricity providers to increase the number or capacity of generators. The construction of a new power plant requires load forecasting to determine how much capacity the plant will build. This study aims to predict the electrical load in Pesisir Selatan, West Sumatra until 2031 using linear regression analysis and time series. Forecasting is done on each sector of PLN customers. Forecasting is done based on the PLN customer sector. The forecasting sectors are the household, business, social and government sectors. The four test criteria were carried out are namely the coefficient of determination test (R2), the F test, the T test and the mean absolute percentage error (MAPE). The forecasting results show that in 2031 the electricity load for the household sector is 120.1 MW, the business sector is 5.7 MW, the social sector is 56.9 MW and the government is 9.5 MW.\",\"PeriodicalId\":34872,\"journal\":{\"name\":\"Elektron\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elektron\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30630/eji.15.1.340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektron","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30630/eji.15.1.340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电动汽车越多,每个地区的电力需求就会增加。这将鼓励电力供应商增加发电机的数量或容量。新电厂的建设需要负荷预测,以确定电厂将建设多少容量。本研究旨在利用线性回归分析和时间序列分析,预测西苏门答腊岛Pesisir Selatan到2031年的电力负荷。对PLN客户的各个部门进行预测。预测是根据PLN客户部门进行的。预测部门是家庭、企业、社会和政府部门。采用四项检验标准,即决定系数检验(R2)、F检验、T检验和平均绝对百分比误差(MAPE)。预测结果显示,到2031年,家庭用电负荷为120.1 MW,商业用电负荷为5.7 MW,社会用电负荷为56.9 MW,政府用电负荷为9.5 MW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Peramalan Beban Listrik Kabupaten Pesisir Selatan Dengan Analisis Regresi
The more electric vehicles emerge, the more electricity demand will increase in each region. This will encourage electricity providers to increase the number or capacity of generators. The construction of a new power plant requires load forecasting to determine how much capacity the plant will build. This study aims to predict the electrical load in Pesisir Selatan, West Sumatra until 2031 using linear regression analysis and time series. Forecasting is done on each sector of PLN customers. Forecasting is done based on the PLN customer sector. The forecasting sectors are the household, business, social and government sectors. The four test criteria were carried out are namely the coefficient of determination test (R2), the F test, the T test and the mean absolute percentage error (MAPE). The forecasting results show that in 2031 the electricity load for the household sector is 120.1 MW, the business sector is 5.7 MW, the social sector is 56.9 MW and the government is 9.5 MW.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
2
审稿时长
12 weeks
期刊最新文献
Análisis de la reflexión de ondas electromagnéticas a través de placas paralelas isótropas Ecosistema de Interoperabilidad basado en C++/MicroPython sobre plataformas Raspberry y ESP32 Estudio y desarrollo de un sistema para tomografía ultrasónica bidimensional Differential-drive Mobile Robot Controller with ROS 2 Support Impedancímetro en la banda de UHF mediante técnicas de reflectometría
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1