WANG Jingzhe, CHEN Baocai, ZHU Shaowei, CHEN Liming
{"title":"锥形负刚度超材料吸能性能研究","authors":"WANG Jingzhe, CHEN Baocai, ZHU Shaowei, CHEN Liming","doi":"10.21656/1000-0887.440055","DOIUrl":null,"url":null,"abstract":"Since negative stiffness metamaterials are reusable as energy-absorbing materials, it is necessary to investigate the energy-absorbing performances and reusability of negative stiffness metamaterials. The designed negative stiffness metamaterial was prepared with the 3D printing technology, and the energy absorption performance of the metamaterial in the multi-stable mode and the mono-stable mode was investigated by repeated loading experiments. The effect of the residual stress on the energy absorption performance of the metamaterial was studied with the natural aging method. The results show that, the specific energy absorption of the designed metamaterial first decreases and then stabilizes with the increase of the number of loading times in the case of repeated loading. In both the multi-stable mode and the mono-stable mode, the natural aging method can effectively release the residual stresses in the metamaterial, thus improving its repeated energy absorption performance.","PeriodicalId":8341,"journal":{"name":"应用数学和力学","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Energy Absorption Performances of Conical Negative Stiffness Metamaterials\",\"authors\":\"WANG Jingzhe, CHEN Baocai, ZHU Shaowei, CHEN Liming\",\"doi\":\"10.21656/1000-0887.440055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since negative stiffness metamaterials are reusable as energy-absorbing materials, it is necessary to investigate the energy-absorbing performances and reusability of negative stiffness metamaterials. The designed negative stiffness metamaterial was prepared with the 3D printing technology, and the energy absorption performance of the metamaterial in the multi-stable mode and the mono-stable mode was investigated by repeated loading experiments. The effect of the residual stress on the energy absorption performance of the metamaterial was studied with the natural aging method. The results show that, the specific energy absorption of the designed metamaterial first decreases and then stabilizes with the increase of the number of loading times in the case of repeated loading. In both the multi-stable mode and the mono-stable mode, the natural aging method can effectively release the residual stresses in the metamaterial, thus improving its repeated energy absorption performance.\",\"PeriodicalId\":8341,\"journal\":{\"name\":\"应用数学和力学\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"应用数学和力学\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21656/1000-0887.440055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用数学和力学","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21656/1000-0887.440055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Study on Energy Absorption Performances of Conical Negative Stiffness Metamaterials
Since negative stiffness metamaterials are reusable as energy-absorbing materials, it is necessary to investigate the energy-absorbing performances and reusability of negative stiffness metamaterials. The designed negative stiffness metamaterial was prepared with the 3D printing technology, and the energy absorption performance of the metamaterial in the multi-stable mode and the mono-stable mode was investigated by repeated loading experiments. The effect of the residual stress on the energy absorption performance of the metamaterial was studied with the natural aging method. The results show that, the specific energy absorption of the designed metamaterial first decreases and then stabilizes with the increase of the number of loading times in the case of repeated loading. In both the multi-stable mode and the mono-stable mode, the natural aging method can effectively release the residual stresses in the metamaterial, thus improving its repeated energy absorption performance.
期刊介绍:
Applied Mathematics and Mechanics was founded in 1980 by CHIEN Wei-zang, a celebrated Chinese scientist in mechanics and mathematics. The current editor in chief is Professor LU Tianjian from Nanjing University of Aeronautics and Astronautics. The Journal was a quarterly in the beginning, a bimonthly the next year, and then a monthly ever since 1985. It carries original research papers on mechanics, mathematical methods in mechanics and interdisciplinary mechanics based on artificial intelligence mathematics. It also strengthens attention to mechanical issues in interdisciplinary fields such as mechanics and information networks, system control, life sciences, ecological sciences, new energy, and new materials, making due contributions to promoting the development of new productive forces.