Katarina Brence, Edgars Kudurs, Kārlis Valters, Dagnija Blumberga
{"title":"双重可再生能源积累:以风能和水能为例","authors":"Katarina Brence, Edgars Kudurs, Kārlis Valters, Dagnija Blumberga","doi":"10.2478/rtuect-2023-0051","DOIUrl":null,"url":null,"abstract":"Abstract Renewable energy sources (RES) are the key element of sustainable energy systems. To accommodate the intermittency of wind (and solar) electricity generation, energy storage is critical. The aim of the study was to evaluate the potential of wind energy storage in the existing hydropower plant reservoirs in Latvia with the pumped hydroelectric energy storage (PHES) technology, considering the current and projected future wind energy capacities. An algorithm was developed and used for data aggregation and analysis, calculations, and forecasting. The three River Daugava hydroelectric power plants are the largest electricity producers in Latvia, and their generation capacity depends on seasonal variations. Currently, Latvia's electricity generation from RES is the highest during the spring season when maximum hydropower potential is utilized. However, wind energy has a potential to grow and could supplement hydropower throughout the year. Decreasing the existing administrative procedure heaviness to faster achieve the climate neutrality targets and energy autonomy by increasing RES development in Latvia is a way to create sustainable energy production. A rational future scenario in Latvia is to expand wind parks and integrate pumped hydroelectric energy storage systems in the existing cascade hydropower plants.","PeriodicalId":46053,"journal":{"name":"Environmental and Climate Technologies","volume":"75 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twinned Renewable Energy Accumulation: Case of Wind and Hydro Energy\",\"authors\":\"Katarina Brence, Edgars Kudurs, Kārlis Valters, Dagnija Blumberga\",\"doi\":\"10.2478/rtuect-2023-0051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Renewable energy sources (RES) are the key element of sustainable energy systems. To accommodate the intermittency of wind (and solar) electricity generation, energy storage is critical. The aim of the study was to evaluate the potential of wind energy storage in the existing hydropower plant reservoirs in Latvia with the pumped hydroelectric energy storage (PHES) technology, considering the current and projected future wind energy capacities. An algorithm was developed and used for data aggregation and analysis, calculations, and forecasting. The three River Daugava hydroelectric power plants are the largest electricity producers in Latvia, and their generation capacity depends on seasonal variations. Currently, Latvia's electricity generation from RES is the highest during the spring season when maximum hydropower potential is utilized. However, wind energy has a potential to grow and could supplement hydropower throughout the year. Decreasing the existing administrative procedure heaviness to faster achieve the climate neutrality targets and energy autonomy by increasing RES development in Latvia is a way to create sustainable energy production. A rational future scenario in Latvia is to expand wind parks and integrate pumped hydroelectric energy storage systems in the existing cascade hydropower plants.\",\"PeriodicalId\":46053,\"journal\":{\"name\":\"Environmental and Climate Technologies\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Climate Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rtuect-2023-0051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Climate Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rtuect-2023-0051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Twinned Renewable Energy Accumulation: Case of Wind and Hydro Energy
Abstract Renewable energy sources (RES) are the key element of sustainable energy systems. To accommodate the intermittency of wind (and solar) electricity generation, energy storage is critical. The aim of the study was to evaluate the potential of wind energy storage in the existing hydropower plant reservoirs in Latvia with the pumped hydroelectric energy storage (PHES) technology, considering the current and projected future wind energy capacities. An algorithm was developed and used for data aggregation and analysis, calculations, and forecasting. The three River Daugava hydroelectric power plants are the largest electricity producers in Latvia, and their generation capacity depends on seasonal variations. Currently, Latvia's electricity generation from RES is the highest during the spring season when maximum hydropower potential is utilized. However, wind energy has a potential to grow and could supplement hydropower throughout the year. Decreasing the existing administrative procedure heaviness to faster achieve the climate neutrality targets and energy autonomy by increasing RES development in Latvia is a way to create sustainable energy production. A rational future scenario in Latvia is to expand wind parks and integrate pumped hydroelectric energy storage systems in the existing cascade hydropower plants.
期刊介绍:
Environmental and Climate Technologies provides a forum for information on innovation, research and development in the areas of environmental science, energy resources and processes, innovative technologies and energy efficiency. Authors are encouraged to submit manuscripts which cover the range from bioeconomy, sustainable technology development, life cycle analysis, eco-design, climate change mitigation, innovative solutions for pollution reduction to resilience, the energy efficiency of buildings, secure and sustainable energy supplies. The Journal ensures international publicity for original research and innovative work. A variety of themes are covered through a multi-disciplinary approach, one which integrates all aspects of environmental science: -Sustainability of technology development- Bioeconomy- Cleaner production, end of pipe production- Zero emission technologies- Eco-design- Life cycle analysis- Eco-efficiency- Environmental impact assessment- Environmental management systems- Resilience- Energy and carbon markets- Greenhouse gas emission reduction and climate technologies- Methodologies for the evaluation of sustainability- Renewable energy resources- Solar, wind, geothermal, hydro energy, biomass sources: algae, wood, straw, biogas, energetic plants and organic waste- Waste management- Quality of outdoor and indoor environment- Environmental monitoring and evaluation- Heat and power generation, including district heating and/or cooling- Energy efficiency.