M. S. Nitschai, N. Neumayer, C. Clontz, M. Häberle, A. C. Seth, T.-O. Husser, S. Kamann, M. Alfaro-Cuello, N. Kacharov, A. Bellini, A. Dotter, S. Dreizler, A. Feldmeier-Krause, M. Latour, M. Libralato, A. P. Milone, R. Pechetti, G. van de Ven, K. Voggel, Daniel R. Weisz
{"title":"oMEGACat。1 .半人马座半光半径内300,000颗恒星的MUSE光谱","authors":"M. S. Nitschai, N. Neumayer, C. Clontz, M. Häberle, A. C. Seth, T.-O. Husser, S. Kamann, M. Alfaro-Cuello, N. Kacharov, A. Bellini, A. Dotter, S. Dreizler, A. Feldmeier-Krause, M. Latour, M. Libralato, A. P. Milone, R. Pechetti, G. van de Ven, K. Voggel, Daniel R. Weisz","doi":"10.3847/1538-4357/acf5db","DOIUrl":null,"url":null,"abstract":"Abstract Omega Centauri ( ω Cen) is the most massive globular cluster of the Milky Way and has been the focus of many studies that reveal the complexity of its stellar populations and kinematics. However, most previous studies have used photometric and spectroscopic data sets with limited spatial or magnitude coverage, while we aim to investigate it having full spatial coverage out to its half-light radius and stars ranging from the main sequence to the tip of the red giant branch. This is the first paper in a new survey of ω Cen that combines uniform imaging and spectroscopic data out to its half-light radius to study its stellar populations, kinematics, and formation history. In this paper, we present an unprecedented MUSE spectroscopic data set combining 87 new MUSE pointings with previous observations collected from guaranteed time observations. We extract spectra of more than 300,000 stars reaching more than 2 magnitudes below the main-sequence turnoff. We use these spectra to derive metallicity and line-of-sight velocity measurements and determine robust uncertainties on these quantities using repeat measurements. Applying quality cuts we achieve signal-to-noise ratios (S/Ns) of 16.47/73.51 and mean metallicity errors of 0.174/0.031 dex for the main-sequence stars (18 mag <mag F 625 W < 22 mag) and red giant branch stars (16 mag <mag F 625 W < 10 mag), respectively. We correct the metallicities for atomic diffusion and identify foreground stars. This massive spectroscopic data set will enable future studies that will transform our understanding of ω Cen, allowing us to investigate the stellar populations, ages, and kinematics in great detail.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"oMEGACat. I. MUSE Spectroscopy of 300,000 Stars within the Half-light Radius of ω Centauri\",\"authors\":\"M. S. Nitschai, N. Neumayer, C. Clontz, M. Häberle, A. C. Seth, T.-O. Husser, S. Kamann, M. Alfaro-Cuello, N. Kacharov, A. Bellini, A. Dotter, S. Dreizler, A. Feldmeier-Krause, M. Latour, M. Libralato, A. P. Milone, R. Pechetti, G. van de Ven, K. Voggel, Daniel R. Weisz\",\"doi\":\"10.3847/1538-4357/acf5db\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Omega Centauri ( ω Cen) is the most massive globular cluster of the Milky Way and has been the focus of many studies that reveal the complexity of its stellar populations and kinematics. However, most previous studies have used photometric and spectroscopic data sets with limited spatial or magnitude coverage, while we aim to investigate it having full spatial coverage out to its half-light radius and stars ranging from the main sequence to the tip of the red giant branch. This is the first paper in a new survey of ω Cen that combines uniform imaging and spectroscopic data out to its half-light radius to study its stellar populations, kinematics, and formation history. In this paper, we present an unprecedented MUSE spectroscopic data set combining 87 new MUSE pointings with previous observations collected from guaranteed time observations. We extract spectra of more than 300,000 stars reaching more than 2 magnitudes below the main-sequence turnoff. We use these spectra to derive metallicity and line-of-sight velocity measurements and determine robust uncertainties on these quantities using repeat measurements. Applying quality cuts we achieve signal-to-noise ratios (S/Ns) of 16.47/73.51 and mean metallicity errors of 0.174/0.031 dex for the main-sequence stars (18 mag <mag F 625 W < 22 mag) and red giant branch stars (16 mag <mag F 625 W < 10 mag), respectively. We correct the metallicities for atomic diffusion and identify foreground stars. This massive spectroscopic data set will enable future studies that will transform our understanding of ω Cen, allowing us to investigate the stellar populations, ages, and kinematics in great detail.\",\"PeriodicalId\":50735,\"journal\":{\"name\":\"Astrophysical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/acf5db\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/acf5db","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
oMEGACat. I. MUSE Spectroscopy of 300,000 Stars within the Half-light Radius of ω Centauri
Abstract Omega Centauri ( ω Cen) is the most massive globular cluster of the Milky Way and has been the focus of many studies that reveal the complexity of its stellar populations and kinematics. However, most previous studies have used photometric and spectroscopic data sets with limited spatial or magnitude coverage, while we aim to investigate it having full spatial coverage out to its half-light radius and stars ranging from the main sequence to the tip of the red giant branch. This is the first paper in a new survey of ω Cen that combines uniform imaging and spectroscopic data out to its half-light radius to study its stellar populations, kinematics, and formation history. In this paper, we present an unprecedented MUSE spectroscopic data set combining 87 new MUSE pointings with previous observations collected from guaranteed time observations. We extract spectra of more than 300,000 stars reaching more than 2 magnitudes below the main-sequence turnoff. We use these spectra to derive metallicity and line-of-sight velocity measurements and determine robust uncertainties on these quantities using repeat measurements. Applying quality cuts we achieve signal-to-noise ratios (S/Ns) of 16.47/73.51 and mean metallicity errors of 0.174/0.031 dex for the main-sequence stars (18 mag
期刊介绍:
The Astrophysical Journal is the foremost research journal in the world devoted to recent developments, discoveries, and theories in astronomy and astrophysics.