{"title":"无机碳酸盐CO<sub>2</sub>在混凝土材料中","authors":"Haruka Takahashi, Ippei Maruyama, Takahiro Ohkubo, Ryoma Kitagaki, Yuya Suda, Atsushi Teramoto, Kazuko Haga, Takahiro Nagase","doi":"10.3151/jact.21.789","DOIUrl":null,"url":null,"abstract":"In this study, CO2 quantification was performed on various concrete binder and aggregates by back titration, ther-mogravimetric method, and combustion-infrared absorption method, and their mutual consistency and error factors due to material characteristics were investigated. The back titration measures CO2 directly and is considered the suitable method for both materials, although the effect of sulfide was a concern. On the other hand, the TGA method was revealed to have the possibility of underestimating or overestimating the CO2 determination because the oxidation of sulfides in blast furnace slag, combustion of unburned carbon in fly ash, and dehydration of clay minerals in aggregate overlapping with the temperature range of calcination of calcium carbonate. In the combustion-infrared absorption method, elemental or organic carbon encapsulated in aggregate particles may underestimate or overestimate the CO2 content. In blended cement, sulfur compounds may interfere with the infrared absorption of CO2 and overestimate the amount of CO2. Based on these results, back titration was considered the most suitable method for determining CO2 for concrete materials. It is essential to understand the characteristics of each sample contained and select appropriate methods for CO2 quantification of concrete materials and concrete.","PeriodicalId":14868,"journal":{"name":"Journal of Advanced Concrete Technology","volume":"13 2","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error Factors in Quantifying Inorganic Carbonate CO<sub>2</sub> in Concrete Materials\",\"authors\":\"Haruka Takahashi, Ippei Maruyama, Takahiro Ohkubo, Ryoma Kitagaki, Yuya Suda, Atsushi Teramoto, Kazuko Haga, Takahiro Nagase\",\"doi\":\"10.3151/jact.21.789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, CO2 quantification was performed on various concrete binder and aggregates by back titration, ther-mogravimetric method, and combustion-infrared absorption method, and their mutual consistency and error factors due to material characteristics were investigated. The back titration measures CO2 directly and is considered the suitable method for both materials, although the effect of sulfide was a concern. On the other hand, the TGA method was revealed to have the possibility of underestimating or overestimating the CO2 determination because the oxidation of sulfides in blast furnace slag, combustion of unburned carbon in fly ash, and dehydration of clay minerals in aggregate overlapping with the temperature range of calcination of calcium carbonate. In the combustion-infrared absorption method, elemental or organic carbon encapsulated in aggregate particles may underestimate or overestimate the CO2 content. In blended cement, sulfur compounds may interfere with the infrared absorption of CO2 and overestimate the amount of CO2. Based on these results, back titration was considered the most suitable method for determining CO2 for concrete materials. It is essential to understand the characteristics of each sample contained and select appropriate methods for CO2 quantification of concrete materials and concrete.\",\"PeriodicalId\":14868,\"journal\":{\"name\":\"Journal of Advanced Concrete Technology\",\"volume\":\"13 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Concrete Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3151/jact.21.789\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Concrete Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3151/jact.21.789","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Error Factors in Quantifying Inorganic Carbonate CO<sub>2</sub> in Concrete Materials
In this study, CO2 quantification was performed on various concrete binder and aggregates by back titration, ther-mogravimetric method, and combustion-infrared absorption method, and their mutual consistency and error factors due to material characteristics were investigated. The back titration measures CO2 directly and is considered the suitable method for both materials, although the effect of sulfide was a concern. On the other hand, the TGA method was revealed to have the possibility of underestimating or overestimating the CO2 determination because the oxidation of sulfides in blast furnace slag, combustion of unburned carbon in fly ash, and dehydration of clay minerals in aggregate overlapping with the temperature range of calcination of calcium carbonate. In the combustion-infrared absorption method, elemental or organic carbon encapsulated in aggregate particles may underestimate or overestimate the CO2 content. In blended cement, sulfur compounds may interfere with the infrared absorption of CO2 and overestimate the amount of CO2. Based on these results, back titration was considered the most suitable method for determining CO2 for concrete materials. It is essential to understand the characteristics of each sample contained and select appropriate methods for CO2 quantification of concrete materials and concrete.
期刊介绍:
JACT is fast. Only 5 to 7 months from submission to publishing thanks to electronic file exchange between you, the reviewers and the editors.
JACT is high quality. Peer-reviewed by internationally renowned experts who return review comments to ensure the highest possible quality.
JACT is transparent. The status of your manuscript from submission to publishing can be viewed on our website, greatly reducing the frustration of being kept in the dark, possibly for over a year in the case of some journals.
JACT is cost-effective. Submission and subscription are free of charge . Full-text PDF files are available for the authors to open at their web sites.
Scope:
*Materials:
-Material properties
-Fresh concrete
-Hardened concrete
-High performance concrete
-Development of new materials
-Fiber reinforcement
*Maintenance and Rehabilitation:
-Durability and repair
-Strengthening/Rehabilitation
-LCC for concrete structures
-Environmant conscious materials
*Structures:
-Design and construction of RC and PC Structures
-Seismic design
-Safety against environmental disasters
-Failure mechanism and non-linear analysis/modeling
-Composite and mixed structures
*Other:
-Monitoring
-Aesthetics of concrete structures
-Other concrete related topics