{"title":"基于光滑颗粒流体力学的铝颗粒激波云点火燃烧模型","authors":"M. Omang, K. O. Hauge, J. K. Trulsen","doi":"10.1007/s00193-023-01148-z","DOIUrl":null,"url":null,"abstract":"<div><p>The present work is a numerical follow-up on our published experimental paper on shock ignition of aluminium particle clouds in the low-temperature regime. The in-house multi-phase regularized smoothed particle hydrodynamics (MP-RSPH) code is used to perform numerical simulations with an increasing degree of complexity, looking at single-phase, inert, and reactive particles in separate simulations. The first part of the paper gives a short description of the additional physics added to the code. Based on the experimental results, the numerical code is then used to estimate the particle temperature at the time of ignition. Results from simulations with three different numerical descriptions, the diffusive, kinetic, and total burn rates, are then compared to the experimental results. The two diffusive burn rate simulations (K &H and O &H) show the best fit to the experimental results. The burn rate formula based on our experimental data (O &H) is preferred, since it has the gas temperature dependency included and does not require additional parameter adjustments. The results from the numerical simulations support the theory that the observed aluminium particle cloud burning process is diffusive, as indicated in the experimental paper.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-023-01148-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Combustion models for shock-induced cloud ignition of aluminium particles using smoothed particle hydrodynamics\",\"authors\":\"M. Omang, K. O. Hauge, J. K. Trulsen\",\"doi\":\"10.1007/s00193-023-01148-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present work is a numerical follow-up on our published experimental paper on shock ignition of aluminium particle clouds in the low-temperature regime. The in-house multi-phase regularized smoothed particle hydrodynamics (MP-RSPH) code is used to perform numerical simulations with an increasing degree of complexity, looking at single-phase, inert, and reactive particles in separate simulations. The first part of the paper gives a short description of the additional physics added to the code. Based on the experimental results, the numerical code is then used to estimate the particle temperature at the time of ignition. Results from simulations with three different numerical descriptions, the diffusive, kinetic, and total burn rates, are then compared to the experimental results. The two diffusive burn rate simulations (K &H and O &H) show the best fit to the experimental results. The burn rate formula based on our experimental data (O &H) is preferred, since it has the gas temperature dependency included and does not require additional parameter adjustments. The results from the numerical simulations support the theory that the observed aluminium particle cloud burning process is diffusive, as indicated in the experimental paper.</p></div>\",\"PeriodicalId\":775,\"journal\":{\"name\":\"Shock Waves\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00193-023-01148-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shock Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00193-023-01148-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-023-01148-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Combustion models for shock-induced cloud ignition of aluminium particles using smoothed particle hydrodynamics
The present work is a numerical follow-up on our published experimental paper on shock ignition of aluminium particle clouds in the low-temperature regime. The in-house multi-phase regularized smoothed particle hydrodynamics (MP-RSPH) code is used to perform numerical simulations with an increasing degree of complexity, looking at single-phase, inert, and reactive particles in separate simulations. The first part of the paper gives a short description of the additional physics added to the code. Based on the experimental results, the numerical code is then used to estimate the particle temperature at the time of ignition. Results from simulations with three different numerical descriptions, the diffusive, kinetic, and total burn rates, are then compared to the experimental results. The two diffusive burn rate simulations (K &H and O &H) show the best fit to the experimental results. The burn rate formula based on our experimental data (O &H) is preferred, since it has the gas temperature dependency included and does not require additional parameter adjustments. The results from the numerical simulations support the theory that the observed aluminium particle cloud burning process is diffusive, as indicated in the experimental paper.
期刊介绍:
Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization.
The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine.
Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community.
The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.