{"title":"通过纳米碳管集成提高mos型光电探测器的近红外光响应性","authors":"Bahram Abedi Ravan","doi":"10.1142/s0219581x23500655","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel hybrid material consisting of multiwalled carbon nanotubes (MWCNTs) and molybdenum disulfide (MoS[Formula: see text] with enhanced photoresponsivity in the near-infrared (NIR) region. MoS 2 nanosheets are obtained through chemical exfoliation in NMP solvent, and MWCNTs are grown on these nanosheets using the chemical vapor deposition (CVD) technique. The combination of the NIR transparency of MWCNTs and the high UV light absorption of MoS 2 leads to a substantial increase in the photoresponsivity ([Formula: see text] of the MoS 2 @MWCNTs hybrid compared to bare MoS 2 specifically in the NIR region. Experimental results demonstrate a remarkable enhancement of [Formula: see text] from 18.6 [Formula: see text]A/W to 155.7 [Formula: see text]A/W in the hybrid material, whereas the opposite trend is observed in the case of bare MoS 2 .","PeriodicalId":14085,"journal":{"name":"International Journal of Nanoscience","volume":"58 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing near-infrared photoresponsivity in mos-based photodetectors through mwcnts integration\",\"authors\":\"Bahram Abedi Ravan\",\"doi\":\"10.1142/s0219581x23500655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel hybrid material consisting of multiwalled carbon nanotubes (MWCNTs) and molybdenum disulfide (MoS[Formula: see text] with enhanced photoresponsivity in the near-infrared (NIR) region. MoS 2 nanosheets are obtained through chemical exfoliation in NMP solvent, and MWCNTs are grown on these nanosheets using the chemical vapor deposition (CVD) technique. The combination of the NIR transparency of MWCNTs and the high UV light absorption of MoS 2 leads to a substantial increase in the photoresponsivity ([Formula: see text] of the MoS 2 @MWCNTs hybrid compared to bare MoS 2 specifically in the NIR region. Experimental results demonstrate a remarkable enhancement of [Formula: see text] from 18.6 [Formula: see text]A/W to 155.7 [Formula: see text]A/W in the hybrid material, whereas the opposite trend is observed in the case of bare MoS 2 .\",\"PeriodicalId\":14085,\"journal\":{\"name\":\"International Journal of Nanoscience\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219581x23500655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219581x23500655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Enhancing near-infrared photoresponsivity in mos-based photodetectors through mwcnts integration
In this paper, we present a novel hybrid material consisting of multiwalled carbon nanotubes (MWCNTs) and molybdenum disulfide (MoS[Formula: see text] with enhanced photoresponsivity in the near-infrared (NIR) region. MoS 2 nanosheets are obtained through chemical exfoliation in NMP solvent, and MWCNTs are grown on these nanosheets using the chemical vapor deposition (CVD) technique. The combination of the NIR transparency of MWCNTs and the high UV light absorption of MoS 2 leads to a substantial increase in the photoresponsivity ([Formula: see text] of the MoS 2 @MWCNTs hybrid compared to bare MoS 2 specifically in the NIR region. Experimental results demonstrate a remarkable enhancement of [Formula: see text] from 18.6 [Formula: see text]A/W to 155.7 [Formula: see text]A/W in the hybrid material, whereas the opposite trend is observed in the case of bare MoS 2 .
期刊介绍:
This inter-disciplinary, internationally-reviewed research journal covers all aspects of nanometer scale science and technology. Articles in any contemporary topical areas are sought, from basic science of nanoscale physics and chemistry to applications in nanodevices, quantum engineering and quantum computing. IJN will include articles in the following research areas (and other related areas): · Properties Effected by Nanoscale Dimensions · Atomic Manipulation, Coupling of Properties at the Nanoscale · Controlled Synthesis, Fabrication and Processing at the Nanoscale · Nanoscale Precursors and Assembly, Nanostructure Arrays, Fullerenes, Carbon Nanotubes and Organic Nanostructures · Quantum Dots, Quantum Wires, Quantum Wells, Superlattices