CrowdQ

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Pub Date : 2023-09-27 DOI:10.1145/3610875
Tieqi Shou, Zhuohan Ye, Yayao Hong, Zhiyuan Wang, Hang Zhu, Zhihan Jiang, Dingqi Yang, Binbin Zhou, Cheng Wang, Longbiao Chen
{"title":"CrowdQ","authors":"Tieqi Shou, Zhuohan Ye, Yayao Hong, Zhiyuan Wang, Hang Zhu, Zhihan Jiang, Dingqi Yang, Binbin Zhou, Cheng Wang, Longbiao Chen","doi":"10.1145/3610875","DOIUrl":null,"url":null,"abstract":"Hospital Emergency Departments (EDs) are essential for providing emergency medical services, yet often overwhelmed due to increasing healthcare demand. Current methods for monitoring ED queue states, such as manual monitoring, video surveillance, and front-desk registration are inefficient, invasive, and delayed to provide real-time updates. To address these challenges, this paper proposes a novel framework, CrowdQ, which harnesses spatiotemporal crowdsensing data for real-time ED demand sensing, queue state modeling, and prediction. By utilizing vehicle trajectory and urban geographic environment data, CrowdQ can accurately estimate emergency visits from noisy traffic flows. Furthermore, it employs queueing theory to model the complex emergency service process with medical service data, effectively considering spatiotemporal dependencies and event context impact on ED queue states. Experiments conducted on large-scale crowdsensing urban traffic datasets and hospital information system datasets from Xiamen City demonstrate the framework's effectiveness. It achieves an F1 score of 0.93 in ED demand identification, effectively models the ED queue state of key hospitals, and reduces the error in queue state prediction by 18.5%-71.3% compared to baseline methods. CrowdQ, therefore, offers valuable alternatives for public emergency treatment information disclosure and maximized medical resource allocation.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"12 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CrowdQ\",\"authors\":\"Tieqi Shou, Zhuohan Ye, Yayao Hong, Zhiyuan Wang, Hang Zhu, Zhihan Jiang, Dingqi Yang, Binbin Zhou, Cheng Wang, Longbiao Chen\",\"doi\":\"10.1145/3610875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hospital Emergency Departments (EDs) are essential for providing emergency medical services, yet often overwhelmed due to increasing healthcare demand. Current methods for monitoring ED queue states, such as manual monitoring, video surveillance, and front-desk registration are inefficient, invasive, and delayed to provide real-time updates. To address these challenges, this paper proposes a novel framework, CrowdQ, which harnesses spatiotemporal crowdsensing data for real-time ED demand sensing, queue state modeling, and prediction. By utilizing vehicle trajectory and urban geographic environment data, CrowdQ can accurately estimate emergency visits from noisy traffic flows. Furthermore, it employs queueing theory to model the complex emergency service process with medical service data, effectively considering spatiotemporal dependencies and event context impact on ED queue states. Experiments conducted on large-scale crowdsensing urban traffic datasets and hospital information system datasets from Xiamen City demonstrate the framework's effectiveness. It achieves an F1 score of 0.93 in ED demand identification, effectively models the ED queue state of key hospitals, and reduces the error in queue state prediction by 18.5%-71.3% compared to baseline methods. CrowdQ, therefore, offers valuable alternatives for public emergency treatment information disclosure and maximized medical resource allocation.\",\"PeriodicalId\":20553,\"journal\":{\"name\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3610875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3610875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

医院急诊科(ed)对于提供紧急医疗服务至关重要,但由于医疗需求的增加,往往不堪重负。当前用于监控ED队列状态的方法(如手动监控、视频监控和前台注册)效率低下、侵入性强,而且无法提供实时更新。为了应对这些挑战,本文提出了一个新的框架CrowdQ,该框架利用时空众感数据进行实时ED需求感知、队列状态建模和预测。通过利用车辆轨迹和城市地理环境数据,CrowdQ可以从嘈杂的交通流中准确估计急诊访问量。在此基础上,利用排队理论对复杂的急诊服务过程进行建模,有效地考虑了时空依赖性和事件上下文对急诊队列状态的影响。在厦门市大型众感城市交通数据集和医院信息系统数据集上进行的实验验证了该框架的有效性。该方法在急诊科需求识别方面的F1得分为0.93,有效地模拟了重点医院急诊科队列状态,与基线方法相比,队列状态预测的误差降低了18.5%-71.3%。因此,CrowdQ为公共急救信息披露和医疗资源最大化配置提供了有价值的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CrowdQ
Hospital Emergency Departments (EDs) are essential for providing emergency medical services, yet often overwhelmed due to increasing healthcare demand. Current methods for monitoring ED queue states, such as manual monitoring, video surveillance, and front-desk registration are inefficient, invasive, and delayed to provide real-time updates. To address these challenges, this paper proposes a novel framework, CrowdQ, which harnesses spatiotemporal crowdsensing data for real-time ED demand sensing, queue state modeling, and prediction. By utilizing vehicle trajectory and urban geographic environment data, CrowdQ can accurately estimate emergency visits from noisy traffic flows. Furthermore, it employs queueing theory to model the complex emergency service process with medical service data, effectively considering spatiotemporal dependencies and event context impact on ED queue states. Experiments conducted on large-scale crowdsensing urban traffic datasets and hospital information system datasets from Xiamen City demonstrate the framework's effectiveness. It achieves an F1 score of 0.93 in ED demand identification, effectively models the ED queue state of key hospitals, and reduces the error in queue state prediction by 18.5%-71.3% compared to baseline methods. CrowdQ, therefore, offers valuable alternatives for public emergency treatment information disclosure and maximized medical resource allocation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
期刊最新文献
Orientation-Aware 3D SLAM in Alternating Magnetic Field from Powerlines UniFi PASTEL Unobtrusive Air Leakage Estimation for Earables with In-ear Microphones PyroSense
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1