Giovanni Ciaramella, Giacomo Iadarola, Fabio Martinelli, Francesco Mercaldo, Antonella Santone
{"title":"基于深度学习技术的可解释勒索软件检测","authors":"Giovanni Ciaramella, Giacomo Iadarola, Fabio Martinelli, Francesco Mercaldo, Antonella Santone","doi":"10.1007/s11416-023-00501-1","DOIUrl":null,"url":null,"abstract":"Globally, the number of internet users increases every year. As a matter of fact, we use technological devices to surf the internet, for online shopping, or just to relax and keep our relationships by spending time on social networks. By doing any of those actions, we release information that can be used in many ways, such as targeted advertising via cookies but also abused by malicious users for scams or theft. On the other hand, many detection systems have been developed with the aim to counteract malicious actions. In particular, special attention has been paid to the malware, designed to perpetrate malicious actions inside software systems and widespread through internet networks or e-mail messages. In this paper, we propose a deep learning model aimed to detect ransomware. We propose a set of experiments aimed to demonstrate that the proposed method obtains good accuracy during the training and test phases across a dataset of over 15,000 elements. Moreover, to improve our results and interpret the output obtained from the models, we have also exploited the Gradient-weighted Class Activation Mapping.","PeriodicalId":15545,"journal":{"name":"Journal of Computer Virology and Hacking Techniques","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable Ransomware Detection with Deep Learning Techniques\",\"authors\":\"Giovanni Ciaramella, Giacomo Iadarola, Fabio Martinelli, Francesco Mercaldo, Antonella Santone\",\"doi\":\"10.1007/s11416-023-00501-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Globally, the number of internet users increases every year. As a matter of fact, we use technological devices to surf the internet, for online shopping, or just to relax and keep our relationships by spending time on social networks. By doing any of those actions, we release information that can be used in many ways, such as targeted advertising via cookies but also abused by malicious users for scams or theft. On the other hand, many detection systems have been developed with the aim to counteract malicious actions. In particular, special attention has been paid to the malware, designed to perpetrate malicious actions inside software systems and widespread through internet networks or e-mail messages. In this paper, we propose a deep learning model aimed to detect ransomware. We propose a set of experiments aimed to demonstrate that the proposed method obtains good accuracy during the training and test phases across a dataset of over 15,000 elements. Moreover, to improve our results and interpret the output obtained from the models, we have also exploited the Gradient-weighted Class Activation Mapping.\",\"PeriodicalId\":15545,\"journal\":{\"name\":\"Journal of Computer Virology and Hacking Techniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Virology and Hacking Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11416-023-00501-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Virology and Hacking Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11416-023-00501-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Explainable Ransomware Detection with Deep Learning Techniques
Globally, the number of internet users increases every year. As a matter of fact, we use technological devices to surf the internet, for online shopping, or just to relax and keep our relationships by spending time on social networks. By doing any of those actions, we release information that can be used in many ways, such as targeted advertising via cookies but also abused by malicious users for scams or theft. On the other hand, many detection systems have been developed with the aim to counteract malicious actions. In particular, special attention has been paid to the malware, designed to perpetrate malicious actions inside software systems and widespread through internet networks or e-mail messages. In this paper, we propose a deep learning model aimed to detect ransomware. We propose a set of experiments aimed to demonstrate that the proposed method obtains good accuracy during the training and test phases across a dataset of over 15,000 elements. Moreover, to improve our results and interpret the output obtained from the models, we have also exploited the Gradient-weighted Class Activation Mapping.
期刊介绍:
The field of computer virus prevention has rapidly taken an important position in our technological and information society. Viral attacks increase year after year, and antiviral efforts continually face new challenges. Beneficial applications of technologies based on scientific computer virology are still very limited. The theoretical aspects of the virus problem are only rarely considered, although many interesting and important open problems still exist. Little proactive research is focused on predicting the future of viral attacks.The Journal of Computer Virology and Hacking Techniques is an independent scientific and technical journal dedicated to viral and antiviral computer technologies. Both theoretical and experimental aspects will be considered; papers emphasizing the theoretical aspects are especially welcome. The topics covered by this journal include, but are certainly not limited to:- Mathematical aspects and theoretical fundamentals of computer virology - Algorithmics and computer virology - Computer immunology and biological models for computers - Reverse engineering (hardware and software) - Viral and antiviral technologies - Cryptology and steganography tools and techniques - Applications in computer virology - Virology and IDS - Hardware hacking, and free and open hardware - Operating system, network, and embedded systems security - Social engineeringIn addition, since computational problems are of practical interest, papers on the computational aspects of computer virology are welcome. It is expected that the areas covered by this journal will change as new technologies, methodologies, challenges and applications develop. Hacking involves understanding technology intimately and in depth in order to use it in an operational way. Hackers are complementary to academics in that they favour the result over the methods and over the theory, while academics favour the formalization and the methods -- explaining is not operating and operating is not explaining. The aim of the journal in this respect is to build a bridge between the two communities for the benefit of technology and science.The aim of the Journal of Computer Virology and Hacking Techniques is to promote constructive research in computer virology by publishing technical and scientific results related to this research area. Submitted papers will be judged primarily by their content, their originality and their technical and scientific quality. Contributions should comprise novel and previously unpublished material.However, prior publication in conference proceedings of an abstract, summary, or other abbreviated, preliminary form of the material should not preclude publication in this journal when notice of such prior or concurrent publication is given with the submission. In addition to full-length theoretical and technical articles, short communications or notes are acceptable. Survey papers will be accepted with a prior invitation only. Special issues devoted to a single topic are also planned.The policy of the journal is to maintain strict refereeing procedures, to perform a high quality peer-review of each submitted paper, and to send notification to the author(s) with as short a delay as possible. Accepted papers will normally be published within one year of submission at the latest. The journal will be published four times a year.
Note: As far as new viral techniques are concerned, the journal strongly encourages authors to consider algorithmic aspects rather than the actual source code of a particular virus. Nonetheless, papers containing viral source codes may be accepted provided that a scientific approach is maintained and that inclusion of the source code is necessary for the presentation of the research. No paper containing a viral source code will be considered or accepted unless the complete source code is communicated to the Editor-in-Chief. No publication will occur before antiviral companies receive this source code to update/upgrade their products.The final objective is, once again, proactive defence.This journal was previously known as Journal in Computer Virology. It is published by Springer France.