Warren W. Wood, Ward E. Sanford, John A. Cherry, Warren T. Wood
{"title":"“破坏岩石”:地下水对大陆的风化作用","authors":"Warren W. Wood, Ward E. Sanford, John A. Cherry, Warren T. Wood","doi":"10.1130/g51571.1","DOIUrl":null,"url":null,"abstract":"Groundwater solute mass flux discharged from the continents to the oceans is between 56% and 63% of particulate sediment transport mass flux. Herein we utilized newly developed continental geospatial groundwater concentration estimates that were multiplied by groundwater volumetric recharge flux to provide a continental-scale discharge mass flux to the oceans of 7.3 Pg DS/yr (petagrams dissolved solutes per year). This mass flux was evaluated from six continental ecosystems: direct ocean discharge (0.28 Pg DS/yr), endorheic basins (0.59 Pg DS/yr), cold-wet exorheic basins (0.55 Pg DS/yr), cold-dry exorheic basins (1.1 Pg DS/yr), warm-dry exorheic basins (0.82 Pg DS/yr), and warm-wet exorheic basins (4.0 Pg DS/yr), thus providing insight into the role of rainfall and temperature on continental weathering and denudation. A new, robust molar silicate/carbonate ratio of 0.42 was calculated for weathering of continental rocks, which is important in the Urey model of climate change. We estimate that rock weathering accounts for ∼50% of the total solute mass flux discharged from the continents, the remainder being from externally derived marine aerosols and organic-derived bicarbonate.","PeriodicalId":12642,"journal":{"name":"Geology","volume":"18 1","pages":"0"},"PeriodicalIF":4.8000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\"Wrecking the rocks\\\": Continental weathering by groundwater\",\"authors\":\"Warren W. Wood, Ward E. Sanford, John A. Cherry, Warren T. Wood\",\"doi\":\"10.1130/g51571.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Groundwater solute mass flux discharged from the continents to the oceans is between 56% and 63% of particulate sediment transport mass flux. Herein we utilized newly developed continental geospatial groundwater concentration estimates that were multiplied by groundwater volumetric recharge flux to provide a continental-scale discharge mass flux to the oceans of 7.3 Pg DS/yr (petagrams dissolved solutes per year). This mass flux was evaluated from six continental ecosystems: direct ocean discharge (0.28 Pg DS/yr), endorheic basins (0.59 Pg DS/yr), cold-wet exorheic basins (0.55 Pg DS/yr), cold-dry exorheic basins (1.1 Pg DS/yr), warm-dry exorheic basins (0.82 Pg DS/yr), and warm-wet exorheic basins (4.0 Pg DS/yr), thus providing insight into the role of rainfall and temperature on continental weathering and denudation. A new, robust molar silicate/carbonate ratio of 0.42 was calculated for weathering of continental rocks, which is important in the Urey model of climate change. We estimate that rock weathering accounts for ∼50% of the total solute mass flux discharged from the continents, the remainder being from externally derived marine aerosols and organic-derived bicarbonate.\",\"PeriodicalId\":12642,\"journal\":{\"name\":\"Geology\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1130/g51571.1\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1130/g51571.1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
"Wrecking the rocks": Continental weathering by groundwater
Groundwater solute mass flux discharged from the continents to the oceans is between 56% and 63% of particulate sediment transport mass flux. Herein we utilized newly developed continental geospatial groundwater concentration estimates that were multiplied by groundwater volumetric recharge flux to provide a continental-scale discharge mass flux to the oceans of 7.3 Pg DS/yr (petagrams dissolved solutes per year). This mass flux was evaluated from six continental ecosystems: direct ocean discharge (0.28 Pg DS/yr), endorheic basins (0.59 Pg DS/yr), cold-wet exorheic basins (0.55 Pg DS/yr), cold-dry exorheic basins (1.1 Pg DS/yr), warm-dry exorheic basins (0.82 Pg DS/yr), and warm-wet exorheic basins (4.0 Pg DS/yr), thus providing insight into the role of rainfall and temperature on continental weathering and denudation. A new, robust molar silicate/carbonate ratio of 0.42 was calculated for weathering of continental rocks, which is important in the Urey model of climate change. We estimate that rock weathering accounts for ∼50% of the total solute mass flux discharged from the continents, the remainder being from externally derived marine aerosols and organic-derived bicarbonate.
期刊介绍:
Published since 1973, Geology features rapid publication of about 23 refereed short (four-page) papers each month. Articles cover all earth-science disciplines and include new investigations and provocative topics. Professional geologists and university-level students in the earth sciences use this widely read journal to keep up with scientific research trends. The online forum section facilitates author-reader dialog. Includes color and occasional large-format illustrations on oversized loose inserts.