非均质性对多孔介质中溶质输运的影响:反常色散

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Journal of Engineering Mathematics Pub Date : 2023-09-27 DOI:10.1007/s10665-023-10293-4
Adam J. Butler, Chunendra K. Sahu, Michael J. Bickle, Jerome A. Neufeld
{"title":"非均质性对多孔介质中溶质输运的影响:反常色散","authors":"Adam J. Butler, Chunendra K. Sahu, Michael J. Bickle, Jerome A. Neufeld","doi":"10.1007/s10665-023-10293-4","DOIUrl":null,"url":null,"abstract":"Abstract Mixing of solute in sub-surface flows, for example in the leakage of contaminants into groundwater, is quantified by a dispersion coefficient that depends on the dispersivity of the medium and the transport velocity. Many previous models of solute transport data have assumed Fickian behaviour with constant dispersivity, but found that the inferred dispersivity increases with the distance from the point of injection. This approach assumes that the dispersion on either side of the advective front is symmetric and that the concentration there is close to half of the injected value. However, field data show consistent asymmetry about the advective front. Here, motivated by experimental data and a fractal interpretation of porous media, we consider a simplified heterogeneous medium described by a dispersivity with a power-law dependence on the downstream distance from the source and explore the nature of the asymmetry obtained in the solute transport. In a heterogeneous medium of this type, we show that asymmetry in solute transport gradually increases with the increase in heterogeneity or fractal dimension, and the concentration at the advective front becomes increasingly different from 50% of that at the inlet. In particular, for a sufficiently heterogeneous medium, the concentration profiles at late-time approach a non-trivial steady solution and, as a result, the concentration at a downstream location will never reach that at the inlet. By fitting the Fickian solution to our results, we are able to connect the parameters from our model to those found from experimental data, providing a more physically grounded approach for interpreting them.","PeriodicalId":50204,"journal":{"name":"Journal of Engineering Mathematics","volume":"50 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of heterogeneity on solute transport in porous media: anomalous dispersion\",\"authors\":\"Adam J. Butler, Chunendra K. Sahu, Michael J. Bickle, Jerome A. Neufeld\",\"doi\":\"10.1007/s10665-023-10293-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Mixing of solute in sub-surface flows, for example in the leakage of contaminants into groundwater, is quantified by a dispersion coefficient that depends on the dispersivity of the medium and the transport velocity. Many previous models of solute transport data have assumed Fickian behaviour with constant dispersivity, but found that the inferred dispersivity increases with the distance from the point of injection. This approach assumes that the dispersion on either side of the advective front is symmetric and that the concentration there is close to half of the injected value. However, field data show consistent asymmetry about the advective front. Here, motivated by experimental data and a fractal interpretation of porous media, we consider a simplified heterogeneous medium described by a dispersivity with a power-law dependence on the downstream distance from the source and explore the nature of the asymmetry obtained in the solute transport. In a heterogeneous medium of this type, we show that asymmetry in solute transport gradually increases with the increase in heterogeneity or fractal dimension, and the concentration at the advective front becomes increasingly different from 50% of that at the inlet. In particular, for a sufficiently heterogeneous medium, the concentration profiles at late-time approach a non-trivial steady solution and, as a result, the concentration at a downstream location will never reach that at the inlet. By fitting the Fickian solution to our results, we are able to connect the parameters from our model to those found from experimental data, providing a more physically grounded approach for interpreting them.\",\"PeriodicalId\":50204,\"journal\":{\"name\":\"Journal of Engineering Mathematics\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-023-10293-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10665-023-10293-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要:溶质在地下流动中的混合,例如污染物向地下水的泄漏,是通过依赖于介质弥散性和输送速度的弥散系数来量化的。以前的许多溶质输运数据模型都假定具有恒定色散的菲克行为,但发现推断的色散随距离注入点的距离而增加。这种方法假定对流锋面两侧的弥散是对称的,并且那里的浓度接近注入值的一半。然而,野外资料显示出对流锋的不对称性。在此,基于实验数据和多孔介质的分形解释,我们考虑了一种简化的非均质介质,该介质由色散描述,色散与源的下游距离呈幂律关系,并探讨了溶质输运中获得的不对称性的本质。在这种非均质介质中,随着非均质或分形维数的增加,溶质输运的不对称性逐渐增加,平流锋的浓度与进口的浓度相差越来越大。特别是,对于一个充分非均质的介质,后期的浓度曲线接近于一个非平凡的稳定解,因此,下游位置的浓度永远不会达到进口位置的浓度。通过将菲克解拟合到我们的结果中,我们能够将我们模型中的参数与从实验数据中发现的参数联系起来,为解释它们提供了一种更基于物理的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effects of heterogeneity on solute transport in porous media: anomalous dispersion
Abstract Mixing of solute in sub-surface flows, for example in the leakage of contaminants into groundwater, is quantified by a dispersion coefficient that depends on the dispersivity of the medium and the transport velocity. Many previous models of solute transport data have assumed Fickian behaviour with constant dispersivity, but found that the inferred dispersivity increases with the distance from the point of injection. This approach assumes that the dispersion on either side of the advective front is symmetric and that the concentration there is close to half of the injected value. However, field data show consistent asymmetry about the advective front. Here, motivated by experimental data and a fractal interpretation of porous media, we consider a simplified heterogeneous medium described by a dispersivity with a power-law dependence on the downstream distance from the source and explore the nature of the asymmetry obtained in the solute transport. In a heterogeneous medium of this type, we show that asymmetry in solute transport gradually increases with the increase in heterogeneity or fractal dimension, and the concentration at the advective front becomes increasingly different from 50% of that at the inlet. In particular, for a sufficiently heterogeneous medium, the concentration profiles at late-time approach a non-trivial steady solution and, as a result, the concentration at a downstream location will never reach that at the inlet. By fitting the Fickian solution to our results, we are able to connect the parameters from our model to those found from experimental data, providing a more physically grounded approach for interpreting them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Engineering Mathematics
Journal of Engineering Mathematics 工程技术-工程:综合
CiteScore
2.10
自引率
7.70%
发文量
44
审稿时长
6 months
期刊介绍: The aim of this journal is to promote the application of mathematics to problems from engineering and the applied sciences. It also aims to emphasize the intrinsic unity, through mathematics, of the fundamental problems of applied and engineering science. The scope of the journal includes the following: • Mathematics: Ordinary and partial differential equations, Integral equations, Asymptotics, Variational and functional−analytic methods, Numerical analysis, Computational methods. • Applied Fields: Continuum mechanics, Stability theory, Wave propagation, Diffusion, Heat and mass transfer, Free−boundary problems; Fluid mechanics: Aero− and hydrodynamics, Boundary layers, Shock waves, Fluid machinery, Fluid−structure interactions, Convection, Combustion, Acoustics, Multi−phase flows, Transition and turbulence, Creeping flow, Rheology, Porous−media flows, Ocean engineering, Atmospheric engineering, Non-Newtonian flows, Ship hydrodynamics; Solid mechanics: Elasticity, Classical mechanics, Nonlinear mechanics, Vibrations, Plates and shells, Fracture mechanics; Biomedical engineering, Geophysical engineering, Reaction−diffusion problems; and related areas. The Journal also publishes occasional invited ''Perspectives'' articles by distinguished researchers reviewing and bringing their authoritative overview to recent developments in topics of current interest in their area of expertise. Authors wishing to suggest topics for such articles should contact the Editors-in-Chief directly. Prospective authors are encouraged to consult recent issues of the journal in order to judge whether or not their manuscript is consistent with the style and content of published papers.
期刊最新文献
Erosion of surfaces by trapped vortices Nanoparticle uptake by a semi-permeable, spherical cell from an external planar diffusive field. II. Numerical study of temporal and spatial development validated using FEM On the positive self-similar solutions of the boundary-layer wedge flow problem of a power-law fluid Experimental and theoretical investigation of impinging droplet solidification at moderate impact velocities Reflection and transmission of SH waves at the interface of a V-notch and a piezoelectric/piezomagnetic half-space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1