Yazheng Li, Ahmed I. Abdo, Zhaoji Shi, Abdel-Rahman M. A. Merwad, Jiaen Zhang
{"title":"入侵植物生物炭对酸雨影响土壤的pH值、常量养分有效性和生物学特性的改善优于石灰","authors":"Yazheng Li, Ahmed I. Abdo, Zhaoji Shi, Abdel-Rahman M. A. Merwad, Jiaen Zhang","doi":"10.1007/s42773-023-00251-9","DOIUrl":null,"url":null,"abstract":"Abstract Rapid development in industrialization and urbanization causes serious environmental issues, of which acid rain is one of the quintessential hazards, negatively affecting soil ecology. Liming has been investigated for a long time as the most effective amendment to alter the adverse effects of soil acidity resulting from acid rain. Herein, this study tested the biochar produced from invasive plants as an alternative amendment and hypothesized that biochar can maintain better availability of macronutrients under acid rain than liming by improving soil chemical and biological properties. Therefore, a pot experiment was conducted to compare the effects of lime and biochar at two rates (1% and 3%) on soil available nitrogen (N), phosphorous (P) and potassium (K) under simulated acid rain of two pH levels (4.5: pH 4.5 and 2.5: pH 2.5 ) as compared with tap water (pH 7.1 ) as a control treatment. Biochar was produced using different invasive plants, including Blackjack ( Biden Pilosa ), Wedelia ( Wedelia trilobata ) and Bitter Vine ( Mikania micrantha Kunth ). Liming decreased the availability of soil N, P, and K by 36.3% as compared with the control due to the great increment in soil pH and exchangeable calcium (Ca 2+ ) by 59% and 16-fold, respectively. Moreover, liming reduced the alpha diversity of soil bacteria and fungi by 27% and 11%, respectively. In contrast, biochar at different types and rates resulted in a fourfold increment in the available N, P, and K as an average under acid rain (pH 4.5 and pH 2.5 ) owing to maintaining a neutral pH (6.5–7), which is the most favorable level for soil microbial and enzymatic activites, and the bioavailability of soil nutrients. Furthermore, biochar caused balanced increments in Ca 2+ by threefold, cation exchange capacity by 45%, urease activity by 16%, and fungal diversity by 10%, while having a slight reduction in bacterial diversity by 2.5%. Based on the path, correlation, and principal component analyses, the exchangeable aluminum was a moderator for the reductions in macronutrients’ availability under acid rain, which decreased by 40% and 35% under liming and biochar, respectively. This study strongly recommended the use of biochar from invasive plants instead of lime for sustainable improvements in soil properties under acid rain. Graphical Abstract","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"74 1","pages":"0"},"PeriodicalIF":13.1000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochar derived from invasive plants improved the pH, macronutrient availability and biological properties better than liming for acid rain-affected soil\",\"authors\":\"Yazheng Li, Ahmed I. Abdo, Zhaoji Shi, Abdel-Rahman M. A. Merwad, Jiaen Zhang\",\"doi\":\"10.1007/s42773-023-00251-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Rapid development in industrialization and urbanization causes serious environmental issues, of which acid rain is one of the quintessential hazards, negatively affecting soil ecology. Liming has been investigated for a long time as the most effective amendment to alter the adverse effects of soil acidity resulting from acid rain. Herein, this study tested the biochar produced from invasive plants as an alternative amendment and hypothesized that biochar can maintain better availability of macronutrients under acid rain than liming by improving soil chemical and biological properties. Therefore, a pot experiment was conducted to compare the effects of lime and biochar at two rates (1% and 3%) on soil available nitrogen (N), phosphorous (P) and potassium (K) under simulated acid rain of two pH levels (4.5: pH 4.5 and 2.5: pH 2.5 ) as compared with tap water (pH 7.1 ) as a control treatment. Biochar was produced using different invasive plants, including Blackjack ( Biden Pilosa ), Wedelia ( Wedelia trilobata ) and Bitter Vine ( Mikania micrantha Kunth ). Liming decreased the availability of soil N, P, and K by 36.3% as compared with the control due to the great increment in soil pH and exchangeable calcium (Ca 2+ ) by 59% and 16-fold, respectively. Moreover, liming reduced the alpha diversity of soil bacteria and fungi by 27% and 11%, respectively. In contrast, biochar at different types and rates resulted in a fourfold increment in the available N, P, and K as an average under acid rain (pH 4.5 and pH 2.5 ) owing to maintaining a neutral pH (6.5–7), which is the most favorable level for soil microbial and enzymatic activites, and the bioavailability of soil nutrients. Furthermore, biochar caused balanced increments in Ca 2+ by threefold, cation exchange capacity by 45%, urease activity by 16%, and fungal diversity by 10%, while having a slight reduction in bacterial diversity by 2.5%. Based on the path, correlation, and principal component analyses, the exchangeable aluminum was a moderator for the reductions in macronutrients’ availability under acid rain, which decreased by 40% and 35% under liming and biochar, respectively. This study strongly recommended the use of biochar from invasive plants instead of lime for sustainable improvements in soil properties under acid rain. Graphical Abstract\",\"PeriodicalId\":8789,\"journal\":{\"name\":\"Biochar\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42773-023-00251-9\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42773-023-00251-9","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Biochar derived from invasive plants improved the pH, macronutrient availability and biological properties better than liming for acid rain-affected soil
Abstract Rapid development in industrialization and urbanization causes serious environmental issues, of which acid rain is one of the quintessential hazards, negatively affecting soil ecology. Liming has been investigated for a long time as the most effective amendment to alter the adverse effects of soil acidity resulting from acid rain. Herein, this study tested the biochar produced from invasive plants as an alternative amendment and hypothesized that biochar can maintain better availability of macronutrients under acid rain than liming by improving soil chemical and biological properties. Therefore, a pot experiment was conducted to compare the effects of lime and biochar at two rates (1% and 3%) on soil available nitrogen (N), phosphorous (P) and potassium (K) under simulated acid rain of two pH levels (4.5: pH 4.5 and 2.5: pH 2.5 ) as compared with tap water (pH 7.1 ) as a control treatment. Biochar was produced using different invasive plants, including Blackjack ( Biden Pilosa ), Wedelia ( Wedelia trilobata ) and Bitter Vine ( Mikania micrantha Kunth ). Liming decreased the availability of soil N, P, and K by 36.3% as compared with the control due to the great increment in soil pH and exchangeable calcium (Ca 2+ ) by 59% and 16-fold, respectively. Moreover, liming reduced the alpha diversity of soil bacteria and fungi by 27% and 11%, respectively. In contrast, biochar at different types and rates resulted in a fourfold increment in the available N, P, and K as an average under acid rain (pH 4.5 and pH 2.5 ) owing to maintaining a neutral pH (6.5–7), which is the most favorable level for soil microbial and enzymatic activites, and the bioavailability of soil nutrients. Furthermore, biochar caused balanced increments in Ca 2+ by threefold, cation exchange capacity by 45%, urease activity by 16%, and fungal diversity by 10%, while having a slight reduction in bacterial diversity by 2.5%. Based on the path, correlation, and principal component analyses, the exchangeable aluminum was a moderator for the reductions in macronutrients’ availability under acid rain, which decreased by 40% and 35% under liming and biochar, respectively. This study strongly recommended the use of biochar from invasive plants instead of lime for sustainable improvements in soil properties under acid rain. Graphical Abstract
期刊介绍:
Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.