Chiara Bellenghi, Paolo Padovani, Elisa Resconi, Paolo Giommi
{"title":"高能冰立方中微子与5BZCAT耀变体和RFC源的关联","authors":"Chiara Bellenghi, Paolo Padovani, Elisa Resconi, Paolo Giommi","doi":"10.3847/2041-8213/acf711","DOIUrl":null,"url":null,"abstract":"Abstract We investigate the possibility that blazars in the Roma-BZCAT Multifrequency Catalogue of Blazars (5BZCAT) are sources of the high-energy astrophysical neutrinos detected by the IceCube Neutrino Observatory, as recently suggested by Buson et al. Although we can reproduce their ∼4.5 σ result, which applies to 7 yr of neutrino data in the southern sky, we find no significant correlation with 5BZCAT sources when extending the search to the northern sky, where IceCube is most sensitive to astrophysical signals. To further test this scenario, we use a larger sample consisting of 10 yr of neutrino data recently released by the IceCube Collaboration, this time finding no significant correlation in neither the southern nor the northern sky. These results suggest that the strong correlation reported by Buson et al. using 5BZCAT could be due to a statistical fluctuation and possibly the spatial and flux nonuniformities in the blazar sample. We perform some additional correlation tests using the more uniform, flux-limited, and blazar-dominated Radio Fundamental Catalogue and find a ∼3.2 σ equivalent p -value when correlating it with the 7 yr southern neutrino sky. However, this correlation disappears completely when extending the analysis to the northern sky and when analyzing 10 yr of all-sky neutrino data. Our findings support a scenario where the contribution of the whole blazar class to the IceCube signal is relevant but not dominant, in agreement with most previous studies.","PeriodicalId":55567,"journal":{"name":"Astrophysical Journal Letters","volume":"21 1","pages":"0"},"PeriodicalIF":8.8000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Correlating High-energy IceCube Neutrinos with 5BZCAT Blazars and RFC Sources\",\"authors\":\"Chiara Bellenghi, Paolo Padovani, Elisa Resconi, Paolo Giommi\",\"doi\":\"10.3847/2041-8213/acf711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We investigate the possibility that blazars in the Roma-BZCAT Multifrequency Catalogue of Blazars (5BZCAT) are sources of the high-energy astrophysical neutrinos detected by the IceCube Neutrino Observatory, as recently suggested by Buson et al. Although we can reproduce their ∼4.5 σ result, which applies to 7 yr of neutrino data in the southern sky, we find no significant correlation with 5BZCAT sources when extending the search to the northern sky, where IceCube is most sensitive to astrophysical signals. To further test this scenario, we use a larger sample consisting of 10 yr of neutrino data recently released by the IceCube Collaboration, this time finding no significant correlation in neither the southern nor the northern sky. These results suggest that the strong correlation reported by Buson et al. using 5BZCAT could be due to a statistical fluctuation and possibly the spatial and flux nonuniformities in the blazar sample. We perform some additional correlation tests using the more uniform, flux-limited, and blazar-dominated Radio Fundamental Catalogue and find a ∼3.2 σ equivalent p -value when correlating it with the 7 yr southern neutrino sky. However, this correlation disappears completely when extending the analysis to the northern sky and when analyzing 10 yr of all-sky neutrino data. Our findings support a scenario where the contribution of the whole blazar class to the IceCube signal is relevant but not dominant, in agreement with most previous studies.\",\"PeriodicalId\":55567,\"journal\":{\"name\":\"Astrophysical Journal Letters\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/acf711\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/acf711","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Correlating High-energy IceCube Neutrinos with 5BZCAT Blazars and RFC Sources
Abstract We investigate the possibility that blazars in the Roma-BZCAT Multifrequency Catalogue of Blazars (5BZCAT) are sources of the high-energy astrophysical neutrinos detected by the IceCube Neutrino Observatory, as recently suggested by Buson et al. Although we can reproduce their ∼4.5 σ result, which applies to 7 yr of neutrino data in the southern sky, we find no significant correlation with 5BZCAT sources when extending the search to the northern sky, where IceCube is most sensitive to astrophysical signals. To further test this scenario, we use a larger sample consisting of 10 yr of neutrino data recently released by the IceCube Collaboration, this time finding no significant correlation in neither the southern nor the northern sky. These results suggest that the strong correlation reported by Buson et al. using 5BZCAT could be due to a statistical fluctuation and possibly the spatial and flux nonuniformities in the blazar sample. We perform some additional correlation tests using the more uniform, flux-limited, and blazar-dominated Radio Fundamental Catalogue and find a ∼3.2 σ equivalent p -value when correlating it with the 7 yr southern neutrino sky. However, this correlation disappears completely when extending the analysis to the northern sky and when analyzing 10 yr of all-sky neutrino data. Our findings support a scenario where the contribution of the whole blazar class to the IceCube signal is relevant but not dominant, in agreement with most previous studies.
期刊介绍:
The Astrophysical Journal Letters (ApJL) is widely regarded as the foremost journal for swiftly disseminating groundbreaking astronomical research. It focuses on concise reports that highlight pivotal advancements in the field of astrophysics. By prioritizing timeliness and the generation of immediate interest among researchers, ApJL showcases articles featuring novel discoveries and critical findings that have a profound effect on the scientific community. Moreover, ApJL ensures that published articles are comprehensive in their scope, presenting context that can be readily comprehensible to scientists who may not possess expertise in the specific disciplines covered.