Ni Made Sri Suliartini, Cynthia A. Joll, Grant B. Douglas
{"title":"海水中产生的水滑石用于修复酸性金属矿井排水和海底安置的评估","authors":"Ni Made Sri Suliartini, Cynthia A. Joll, Grant B. Douglas","doi":"10.1007/s10230-023-00934-6","DOIUrl":null,"url":null,"abstract":"Abstract Uncontrolled release of acid mine drainage (AMD) causes widespread detrimental impacts on the receiving environment. Thus, effective treatment to neutralise AMD effluent pH and capture a suite of metals is required. In-situ hydrotalcite (HTC) precipitation is an emerging technology for AMD remediation. HTC has an inherent capacity to accommodate a range of cations and anions during in situ formation, offering a method of broad-spectrum contaminant removal. This study explored the feasibility of using seawater as an Mg source and synthetic AMD in HTC formation. The HTC was formed from a stoichiometric combination of synthetic AMD and seawater. While three initial stoichiometric M 2+ :M 3+ ratios of 2:1, 3:1, and 4:1 were investigated, only HTC with an M 2+ :M 3+ ratio of 2:1 was generated, as confirmed by both mineralogical and geochemical analyses. Importantly, the HTC was demonstrated to effectively remove a suite of metals present in AMD such as Cu, Zn, Al, and Mn with removal rates of between 99.97 to 99.99%. The HTC precipitate contained ≈6.6% Cu and 4.1% Zn, and thus shows the potential, if required, for future metal recovery. Since submarine placement is often used in metal mining and processing operations proximal to the coast, the stability of the HTC precipitate in seawater was also investigated. Importantly, only 0.2% of the Cu and 1.1% of the Zn within the HTC were subsequently leaching in decreasing increments into seawater over 30 days with decreasing increments after the initial seven days. This indicates robust element retention and confirms the potential of HTC for AMD remediation with direct submarine placement.","PeriodicalId":18571,"journal":{"name":"Mine Water and the Environment","volume":"18 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"海水中产生的水滑石用于修复酸性金属矿井排水和海底安置的评估\",\"authors\":\"Ni Made Sri Suliartini, Cynthia A. Joll, Grant B. Douglas\",\"doi\":\"10.1007/s10230-023-00934-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Uncontrolled release of acid mine drainage (AMD) causes widespread detrimental impacts on the receiving environment. Thus, effective treatment to neutralise AMD effluent pH and capture a suite of metals is required. In-situ hydrotalcite (HTC) precipitation is an emerging technology for AMD remediation. HTC has an inherent capacity to accommodate a range of cations and anions during in situ formation, offering a method of broad-spectrum contaminant removal. This study explored the feasibility of using seawater as an Mg source and synthetic AMD in HTC formation. The HTC was formed from a stoichiometric combination of synthetic AMD and seawater. While three initial stoichiometric M 2+ :M 3+ ratios of 2:1, 3:1, and 4:1 were investigated, only HTC with an M 2+ :M 3+ ratio of 2:1 was generated, as confirmed by both mineralogical and geochemical analyses. Importantly, the HTC was demonstrated to effectively remove a suite of metals present in AMD such as Cu, Zn, Al, and Mn with removal rates of between 99.97 to 99.99%. The HTC precipitate contained ≈6.6% Cu and 4.1% Zn, and thus shows the potential, if required, for future metal recovery. Since submarine placement is often used in metal mining and processing operations proximal to the coast, the stability of the HTC precipitate in seawater was also investigated. Importantly, only 0.2% of the Cu and 1.1% of the Zn within the HTC were subsequently leaching in decreasing increments into seawater over 30 days with decreasing increments after the initial seven days. This indicates robust element retention and confirms the potential of HTC for AMD remediation with direct submarine placement.\",\"PeriodicalId\":18571,\"journal\":{\"name\":\"Mine Water and the Environment\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mine Water and the Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10230-023-00934-6\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mine Water and the Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10230-023-00934-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Abstract Uncontrolled release of acid mine drainage (AMD) causes widespread detrimental impacts on the receiving environment. Thus, effective treatment to neutralise AMD effluent pH and capture a suite of metals is required. In-situ hydrotalcite (HTC) precipitation is an emerging technology for AMD remediation. HTC has an inherent capacity to accommodate a range of cations and anions during in situ formation, offering a method of broad-spectrum contaminant removal. This study explored the feasibility of using seawater as an Mg source and synthetic AMD in HTC formation. The HTC was formed from a stoichiometric combination of synthetic AMD and seawater. While three initial stoichiometric M 2+ :M 3+ ratios of 2:1, 3:1, and 4:1 were investigated, only HTC with an M 2+ :M 3+ ratio of 2:1 was generated, as confirmed by both mineralogical and geochemical analyses. Importantly, the HTC was demonstrated to effectively remove a suite of metals present in AMD such as Cu, Zn, Al, and Mn with removal rates of between 99.97 to 99.99%. The HTC precipitate contained ≈6.6% Cu and 4.1% Zn, and thus shows the potential, if required, for future metal recovery. Since submarine placement is often used in metal mining and processing operations proximal to the coast, the stability of the HTC precipitate in seawater was also investigated. Importantly, only 0.2% of the Cu and 1.1% of the Zn within the HTC were subsequently leaching in decreasing increments into seawater over 30 days with decreasing increments after the initial seven days. This indicates robust element retention and confirms the potential of HTC for AMD remediation with direct submarine placement.
期刊介绍:
Mine Water and the Environment welcomes original contributions that address either technical questions or practical issues related to the evaluation, prediction, prevention, or control of water problems at mining operations or their impact on the environment. The journal and its audience is interdisciplinary. Manuscripts should convey new technical information and be of potential interest to researchers and/or practitioners in this field. Laboratory and field experiments, modelling efforts, studies of relevant field sites, technical evaluations of new technology, and engineering applications are all appropriate.