Murtadha Al-Kaabi, Jaleel Al Hasheme, Layth Al-Bahrani
{"title":"求解多目标最优潮流问题的改进差分进化算法","authors":"Murtadha Al-Kaabi, Jaleel Al Hasheme, Layth Al-Bahrani","doi":"10.24425/aee.2022.141676","DOIUrl":null,"url":null,"abstract":": This article presents a new efficient optimization technique namely the Multi-Objective Improved Differential Evolution Algorithm (MOIDEA) to solve the multi-objective optimal power flow problem in power systems. The main features of the Differential Evolution (DE) algorithm are simple, easy, and efficient, but sometimes, it is prone to stagnation in the local optima. This paper has proposed many improvements, in the exploration and exploitation processes, to enhance the performance of DE for solving optimal power flow (OPF) problems. The main contributions of the DE algorithm are i) the crossover rate will be changing randomly and continuously for each iteration, ii) all probabilities that have been ignored in the crossover process have been taken, and iii) in selection operation, the mathematical calculations of the mutation process have been taken. Four conflicting objective functions simultaneously have been applied to select the Pareto optimal front for the multi-objective OPF. Fuzzy set theory has been used to extract the best compromise solution. These objective functions that have been considered for setting control variables of the power system are total fuel cost (TFC), total emission (TE), real power losses (RPL), and voltage profile (VP) improvement. The IEEE 30-bus standard system has been used to validate the effectiveness and superiority of the approach proposed based on MATLAB software. Finally, to demonstrate the effectiveness and capability of the MOIDEA, the results obtained by this method will be compared with other recent methods","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved Differential Evolution Algorithm to solve multi-objective of optimal power flow problem\",\"authors\":\"Murtadha Al-Kaabi, Jaleel Al Hasheme, Layth Al-Bahrani\",\"doi\":\"10.24425/aee.2022.141676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": This article presents a new efficient optimization technique namely the Multi-Objective Improved Differential Evolution Algorithm (MOIDEA) to solve the multi-objective optimal power flow problem in power systems. The main features of the Differential Evolution (DE) algorithm are simple, easy, and efficient, but sometimes, it is prone to stagnation in the local optima. This paper has proposed many improvements, in the exploration and exploitation processes, to enhance the performance of DE for solving optimal power flow (OPF) problems. The main contributions of the DE algorithm are i) the crossover rate will be changing randomly and continuously for each iteration, ii) all probabilities that have been ignored in the crossover process have been taken, and iii) in selection operation, the mathematical calculations of the mutation process have been taken. Four conflicting objective functions simultaneously have been applied to select the Pareto optimal front for the multi-objective OPF. Fuzzy set theory has been used to extract the best compromise solution. These objective functions that have been considered for setting control variables of the power system are total fuel cost (TFC), total emission (TE), real power losses (RPL), and voltage profile (VP) improvement. The IEEE 30-bus standard system has been used to validate the effectiveness and superiority of the approach proposed based on MATLAB software. Finally, to demonstrate the effectiveness and capability of the MOIDEA, the results obtained by this method will be compared with other recent methods\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/aee.2022.141676\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/aee.2022.141676","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Improved Differential Evolution Algorithm to solve multi-objective of optimal power flow problem
: This article presents a new efficient optimization technique namely the Multi-Objective Improved Differential Evolution Algorithm (MOIDEA) to solve the multi-objective optimal power flow problem in power systems. The main features of the Differential Evolution (DE) algorithm are simple, easy, and efficient, but sometimes, it is prone to stagnation in the local optima. This paper has proposed many improvements, in the exploration and exploitation processes, to enhance the performance of DE for solving optimal power flow (OPF) problems. The main contributions of the DE algorithm are i) the crossover rate will be changing randomly and continuously for each iteration, ii) all probabilities that have been ignored in the crossover process have been taken, and iii) in selection operation, the mathematical calculations of the mutation process have been taken. Four conflicting objective functions simultaneously have been applied to select the Pareto optimal front for the multi-objective OPF. Fuzzy set theory has been used to extract the best compromise solution. These objective functions that have been considered for setting control variables of the power system are total fuel cost (TFC), total emission (TE), real power losses (RPL), and voltage profile (VP) improvement. The IEEE 30-bus standard system has been used to validate the effectiveness and superiority of the approach proposed based on MATLAB software. Finally, to demonstrate the effectiveness and capability of the MOIDEA, the results obtained by this method will be compared with other recent methods
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.