求助PDF
{"title":"半光滑非线性非线性Schrödinger方程时分裂方法的误差估计","authors":"Weizhu Bao, Chushan Wang","doi":"10.1090/mcom/3900","DOIUrl":null,"url":null,"abstract":"We establish error bounds of the Lie-Trotter time-splitting sine pseudospectral method for the nonlinear Schrödinger equation (NLSE) with semi-smooth nonlinearity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f left-parenthesis rho right-parenthesis equals rho Superscript sigma\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mi>σ<!-- σ --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">f(\\rho ) = \\rho ^\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho equals StartAbsoluteValue psi EndAbsoluteValue squared\"> <mml:semantics> <mml:mrow> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo>=</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\rho =|\\psi |^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the density with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"psi\"> <mml:semantics> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\psi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the wave function and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sigma >0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the exponent of the semi-smooth nonlinearity. Under the assumption of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H squared\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-solution of the NLSE, we prove error bounds at <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis tau Superscript one half plus sigma Baseline plus h Superscript 1 plus 2 sigma Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>τ<!-- τ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>+</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\tau ^{\\frac {1}{2}+\\sigma } + h^{1+2\\sigma })</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis tau plus h squared right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>τ<!-- τ --></mml:mi> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\tau + h^{2})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than sigma less-than-or-equal-to one half\"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>></mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">0>\\sigma \\leq \\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma greater-than-or-equal-to one half\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sigma \\geq \\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, respectively, and an error bound at <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis tau Superscript one half Baseline plus h right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>τ<!-- τ --></mml:mi> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:msup> <mml:mo>+</mml:mo> <mml:mi>h</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\tau ^\\frac {1}{2} + h)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 1\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma greater-than-or-equal-to one half\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sigma \\geq \\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\"> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding=\"application/x-tex\">h</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau\"> <mml:semantics> <mml:mi>τ<!-- τ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are the mesh size and time step size, respectively. In addition, when <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"one half greater-than sigma greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>></mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\frac {1}{2}>\\sigma >1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and under the assumption of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H cubed\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>3</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-solution of the NLSE, we show an error bound at <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis tau Superscript sigma Baseline plus h Superscript 2 sigma Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>τ<!-- τ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>2</mml:mn> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\tau ^{\\sigma } + h^{2\\sigma })</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 1\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm. Two key ingredients are adopted in our proof: one is to adopt an unconditional <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stability of the numerical flow in order to avoid an a priori estimate of the numerical solution for the case of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than sigma less-than-or-equal-to one half\"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>></mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">0 > \\sigma \\leq \\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and to establish an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"l Superscript normal infinity\"> <mml:semantics> <mml:msup> <mml:mi>l</mml:mi> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">l^\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-conditional <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 1\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stability to obtain the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"l Superscript normal infinity\"> <mml:semantics> <mml:msup> <mml:mi>l</mml:mi> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">l^\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-bound of the numerical solution by using the mathematical induction and the error estimates for the case of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma greater-than-or-equal-to one half\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sigma \\ge \\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; and the other one is to introduce a regularization technique to avoid the singularity of the semi-smooth nonlinearity in obtaining improved local truncation errors. Finally, numerical results are reported to demonstrate our error bounds.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error estimates of the time-splitting methods for the nonlinear Schrödinger equation with semi-smooth nonlinearity\",\"authors\":\"Weizhu Bao, Chushan Wang\",\"doi\":\"10.1090/mcom/3900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish error bounds of the Lie-Trotter time-splitting sine pseudospectral method for the nonlinear Schrödinger equation (NLSE) with semi-smooth nonlinearity <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f left-parenthesis rho right-parenthesis equals rho Superscript sigma\\\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mi>σ<!-- σ --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">f(\\\\rho ) = \\\\rho ^\\\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"rho equals StartAbsoluteValue psi EndAbsoluteValue squared\\\"> <mml:semantics> <mml:mrow> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo>=</mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\rho =|\\\\psi |^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the density with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"psi\\\"> <mml:semantics> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\psi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the wave function and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma greater-than 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma >0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the exponent of the semi-smooth nonlinearity. Under the assumption of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H squared\\\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">H^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-solution of the NLSE, we prove error bounds at <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis tau Superscript one half plus sigma Baseline plus h Superscript 1 plus 2 sigma Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mi>τ<!-- τ --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>+</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">O(\\\\tau ^{\\\\frac {1}{2}+\\\\sigma } + h^{1+2\\\\sigma })</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis tau plus h squared right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>τ<!-- τ --></mml:mi> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">O(\\\\tau + h^{2})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L squared\\\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0 greater-than sigma less-than-or-equal-to one half\\\"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>></mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">0>\\\\sigma \\\\leq \\\\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma greater-than-or-equal-to one half\\\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma \\\\geq \\\\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, respectively, and an error bound at <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis tau Superscript one half Baseline plus h right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mi>τ<!-- τ --></mml:mi> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:msup> <mml:mo>+</mml:mo> <mml:mi>h</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">O(\\\\tau ^\\\\frac {1}{2} + h)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript 1\\\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">H^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma greater-than-or-equal-to one half\\\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma \\\\geq \\\\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"h\\\"> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">h</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"tau\\\"> <mml:semantics> <mml:mi>τ<!-- τ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are the mesh size and time step size, respectively. In addition, when <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"one half greater-than sigma greater-than 1\\\"> <mml:semantics> <mml:mrow> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>></mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\frac {1}{2}>\\\\sigma >1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and under the assumption of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H cubed\\\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>3</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">H^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-solution of the NLSE, we show an error bound at <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis tau Superscript sigma Baseline plus h Superscript 2 sigma Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mi>τ<!-- τ --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>2</mml:mn> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">O(\\\\tau ^{\\\\sigma } + h^{2\\\\sigma })</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript 1\\\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">H^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm. Two key ingredients are adopted in our proof: one is to adopt an unconditional <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L squared\\\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stability of the numerical flow in order to avoid an a priori estimate of the numerical solution for the case of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0 greater-than sigma less-than-or-equal-to one half\\\"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>></mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">0 > \\\\sigma \\\\leq \\\\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and to establish an <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"l Superscript normal infinity\\\"> <mml:semantics> <mml:msup> <mml:mi>l</mml:mi> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">l^\\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-conditional <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript 1\\\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">H^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stability to obtain the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"l Superscript normal infinity\\\"> <mml:semantics> <mml:msup> <mml:mi>l</mml:mi> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">l^\\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-bound of the numerical solution by using the mathematical induction and the error estimates for the case of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma greater-than-or-equal-to one half\\\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma \\\\ge \\\\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; and the other one is to introduce a regularization technique to avoid the singularity of the semi-smooth nonlinearity in obtaining improved local truncation errors. Finally, numerical results are reported to demonstrate our error bounds.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Error estimates of the time-splitting methods for the nonlinear Schrödinger equation with semi-smooth nonlinearity
We establish error bounds of the Lie-Trotter time-splitting sine pseudospectral method for the nonlinear Schrödinger equation (NLSE) with semi-smooth nonlinearity f ( ρ ) = ρ σ f(\rho ) = \rho ^\sigma , where ρ = | ψ | 2 \rho =|\psi |^2 is the density with ψ \psi the wave function and σ > 0 \sigma >0 is the exponent of the semi-smooth nonlinearity. Under the assumption of H 2 H^2 -solution of the NLSE, we prove error bounds at O ( τ 1 2 + σ + h 1 + 2 σ ) O(\tau ^{\frac {1}{2}+\sigma } + h^{1+2\sigma }) and O ( τ + h 2 ) O(\tau + h^{2}) in L 2 L^2 -norm for 0 > σ ≤ 1 2 0>\sigma \leq \frac {1}{2} and σ ≥ 1 2 \sigma \geq \frac {1}{2} , respectively, and an error bound at O ( τ 1 2 + h ) O(\tau ^\frac {1}{2} + h) in H 1 H^1 -norm for σ ≥ 1 2 \sigma \geq \frac {1}{2} , where h h and τ \tau are the mesh size and time step size, respectively. In addition, when 1 2 > σ > 1 \frac {1}{2}>\sigma >1 and under the assumption of H 3 H^3 -solution of the NLSE, we show an error bound at O ( τ σ + h 2 σ ) O(\tau ^{\sigma } + h^{2\sigma }) in H 1 H^1 -norm. Two key ingredients are adopted in our proof: one is to adopt an unconditional L 2 L^2 -stability of the numerical flow in order to avoid an a priori estimate of the numerical solution for the case of 0 > σ ≤ 1 2 0 > \sigma \leq \frac {1}{2} , and to establish an l ∞ l^\infty -conditional H 1 H^1 -stability to obtain the l ∞ l^\infty -bound of the numerical solution by using the mathematical induction and the error estimates for the case of σ ≥ 1 2 \sigma \ge \frac {1}{2} ; and the other one is to introduce a regularization technique to avoid the singularity of the semi-smooth nonlinearity in obtaining improved local truncation errors. Finally, numerical results are reported to demonstrate our error bounds.