Natasa Radulovic, Ivan Pilipovic, Ivana Stojanovic
{"title":"在小鼠实验模型中,应用中等浓度的环磷酰胺不会特异性地耗尽调节性T细胞","authors":"Natasa Radulovic, Ivan Pilipovic, Ivana Stojanovic","doi":"10.2298/abs230715032r","DOIUrl":null,"url":null,"abstract":"Cyclophosphamide (CP) is a cytostatic, widely used to treat different carcinomas and autoimmune diseases. It is commonly used in experimental designs modeling immunosuppression in laboratory animals, with different approaches for CP treatment but without a consensus on the dose, timing, and route of administration. We aimed to establish if treatment with CP in C57BL/6 mice depletes regulatory T cells (Tregs). Tregs are a crucial component of the immune system that helps maintain immune tolerance and prevent excessive immune reactions. They are significant in autoimmune diseases, allergies, and immune-related therapies. CP was applied intraperitoneally (i.p.) twice in a 5-day interval in doses of 100 mg/kg. Monitoring of Treg prevalence in peripheral blood after each treatment and in the spleen after the second treatment with CP revealed a drop in the number of Tregs after two doses of CP because of the decreased number of total lymphocytes but not as a specific response of the Tregs. The prevalence of Tregs in peripheral blood after CP treatment mirrored the change in Treg number in the spleen. CP treatment induced a decrease in the number of CD3+ cells in the spleen while increasing their proportion, indicating that CP affected the B lymphocyte population rather than T cells. Our results suggest that CP treatment cannot be used as a specific Treg-depleting agent in the C57BL/6 animal model.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of an intermediate concentration of cyclophosphamide does not specifically deplete regulatory T cells in a mouse experimental model\",\"authors\":\"Natasa Radulovic, Ivan Pilipovic, Ivana Stojanovic\",\"doi\":\"10.2298/abs230715032r\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyclophosphamide (CP) is a cytostatic, widely used to treat different carcinomas and autoimmune diseases. It is commonly used in experimental designs modeling immunosuppression in laboratory animals, with different approaches for CP treatment but without a consensus on the dose, timing, and route of administration. We aimed to establish if treatment with CP in C57BL/6 mice depletes regulatory T cells (Tregs). Tregs are a crucial component of the immune system that helps maintain immune tolerance and prevent excessive immune reactions. They are significant in autoimmune diseases, allergies, and immune-related therapies. CP was applied intraperitoneally (i.p.) twice in a 5-day interval in doses of 100 mg/kg. Monitoring of Treg prevalence in peripheral blood after each treatment and in the spleen after the second treatment with CP revealed a drop in the number of Tregs after two doses of CP because of the decreased number of total lymphocytes but not as a specific response of the Tregs. The prevalence of Tregs in peripheral blood after CP treatment mirrored the change in Treg number in the spleen. CP treatment induced a decrease in the number of CD3+ cells in the spleen while increasing their proportion, indicating that CP affected the B lymphocyte population rather than T cells. Our results suggest that CP treatment cannot be used as a specific Treg-depleting agent in the C57BL/6 animal model.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/abs230715032r\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/abs230715032r","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of an intermediate concentration of cyclophosphamide does not specifically deplete regulatory T cells in a mouse experimental model
Cyclophosphamide (CP) is a cytostatic, widely used to treat different carcinomas and autoimmune diseases. It is commonly used in experimental designs modeling immunosuppression in laboratory animals, with different approaches for CP treatment but without a consensus on the dose, timing, and route of administration. We aimed to establish if treatment with CP in C57BL/6 mice depletes regulatory T cells (Tregs). Tregs are a crucial component of the immune system that helps maintain immune tolerance and prevent excessive immune reactions. They are significant in autoimmune diseases, allergies, and immune-related therapies. CP was applied intraperitoneally (i.p.) twice in a 5-day interval in doses of 100 mg/kg. Monitoring of Treg prevalence in peripheral blood after each treatment and in the spleen after the second treatment with CP revealed a drop in the number of Tregs after two doses of CP because of the decreased number of total lymphocytes but not as a specific response of the Tregs. The prevalence of Tregs in peripheral blood after CP treatment mirrored the change in Treg number in the spleen. CP treatment induced a decrease in the number of CD3+ cells in the spleen while increasing their proportion, indicating that CP affected the B lymphocyte population rather than T cells. Our results suggest that CP treatment cannot be used as a specific Treg-depleting agent in the C57BL/6 animal model.