Stephan Helfrich, Arne Herzel, Stefan Ruzika, Clemens Thielen
{"title":"用标量化逼近多目标优化问题:走向一般理论","authors":"Stephan Helfrich, Arne Herzel, Stefan Ruzika, Clemens Thielen","doi":"10.1007/s00186-023-00823-2","DOIUrl":null,"url":null,"abstract":"Abstract We study the approximation of general multiobjective optimization problems with the help of scalarizations. Existing results state that multiobjective minimization problems can be approximated well by norm-based scalarizations. However, for multiobjective maximization problems, only impossibility results are known so far. Countering this, we show that all multiobjective optimization problems can, in principle, be approximated equally well by scalarizations. In this context, we introduce a transformation theory for scalarizations that establishes the following: Suppose there exists a scalarization that yields an approximation of a certain quality for arbitrary instances of multiobjective optimization problems with a given decomposition specifying which objective functions are to be minimized/maximized. Then, for each other decomposition, our transformation yields another scalarization that yields the same approximation quality for arbitrary instances of problems with this other decomposition. In this sense, the existing results about the approximation via scalarizations for minimization problems carry over to any other objective decomposition—in particular, to maximization problems—when suitably adapting the employed scalarization. We further provide necessary and sufficient conditions on a scalarization such that its optimal solutions achieve a constant approximation quality. We give an upper bound on the best achievable approximation quality that applies to general scalarizations and is tight for the majority of norm-based scalarizations applied in the context of multiobjective optimization. As a consequence, none of these norm-based scalarizations can induce approximation sets for optimization problems with maximization objectives, which unifies and generalizes the existing impossibility results concerning the approximation of maximization problems.","PeriodicalId":49862,"journal":{"name":"Mathematical Methods of Operations Research","volume":"43 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using scalarizations for the approximation of multiobjective optimization problems: towards a general theory\",\"authors\":\"Stephan Helfrich, Arne Herzel, Stefan Ruzika, Clemens Thielen\",\"doi\":\"10.1007/s00186-023-00823-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the approximation of general multiobjective optimization problems with the help of scalarizations. Existing results state that multiobjective minimization problems can be approximated well by norm-based scalarizations. However, for multiobjective maximization problems, only impossibility results are known so far. Countering this, we show that all multiobjective optimization problems can, in principle, be approximated equally well by scalarizations. In this context, we introduce a transformation theory for scalarizations that establishes the following: Suppose there exists a scalarization that yields an approximation of a certain quality for arbitrary instances of multiobjective optimization problems with a given decomposition specifying which objective functions are to be minimized/maximized. Then, for each other decomposition, our transformation yields another scalarization that yields the same approximation quality for arbitrary instances of problems with this other decomposition. In this sense, the existing results about the approximation via scalarizations for minimization problems carry over to any other objective decomposition—in particular, to maximization problems—when suitably adapting the employed scalarization. We further provide necessary and sufficient conditions on a scalarization such that its optimal solutions achieve a constant approximation quality. We give an upper bound on the best achievable approximation quality that applies to general scalarizations and is tight for the majority of norm-based scalarizations applied in the context of multiobjective optimization. As a consequence, none of these norm-based scalarizations can induce approximation sets for optimization problems with maximization objectives, which unifies and generalizes the existing impossibility results concerning the approximation of maximization problems.\",\"PeriodicalId\":49862,\"journal\":{\"name\":\"Mathematical Methods of Operations Research\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods of Operations Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00186-023-00823-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods of Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00186-023-00823-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Using scalarizations for the approximation of multiobjective optimization problems: towards a general theory
Abstract We study the approximation of general multiobjective optimization problems with the help of scalarizations. Existing results state that multiobjective minimization problems can be approximated well by norm-based scalarizations. However, for multiobjective maximization problems, only impossibility results are known so far. Countering this, we show that all multiobjective optimization problems can, in principle, be approximated equally well by scalarizations. In this context, we introduce a transformation theory for scalarizations that establishes the following: Suppose there exists a scalarization that yields an approximation of a certain quality for arbitrary instances of multiobjective optimization problems with a given decomposition specifying which objective functions are to be minimized/maximized. Then, for each other decomposition, our transformation yields another scalarization that yields the same approximation quality for arbitrary instances of problems with this other decomposition. In this sense, the existing results about the approximation via scalarizations for minimization problems carry over to any other objective decomposition—in particular, to maximization problems—when suitably adapting the employed scalarization. We further provide necessary and sufficient conditions on a scalarization such that its optimal solutions achieve a constant approximation quality. We give an upper bound on the best achievable approximation quality that applies to general scalarizations and is tight for the majority of norm-based scalarizations applied in the context of multiobjective optimization. As a consequence, none of these norm-based scalarizations can induce approximation sets for optimization problems with maximization objectives, which unifies and generalizes the existing impossibility results concerning the approximation of maximization problems.
期刊介绍:
This peer reviewed journal publishes original and high-quality articles on important mathematical and computational aspects of operations research, in particular in the areas of continuous and discrete mathematical optimization, stochastics, and game theory. Theoretically oriented papers are supposed to include explicit motivations of assumptions and results, while application oriented papers need to contain substantial mathematical contributions. Suggestions for algorithms should be accompanied with numerical evidence for their superiority over state-of-the-art methods. Articles must be of interest for a large audience in operations research, written in clear and correct English, and typeset in LaTeX. A special section contains invited tutorial papers on advanced mathematical or computational aspects of operations research, aiming at making such methodologies accessible for a wider audience.
All papers are refereed. The emphasis is on originality, quality, and importance.