{"title":"LIGO-Virgo-KAGRA最古老的黑洞:用GWTC-3探测宇宙正午的恒星形成","authors":"Maya Fishbach, Lieke van Son","doi":"10.3847/2041-8213/ad0560","DOIUrl":null,"url":null,"abstract":"Abstract In their third observing run, the LIGO–Virgo–KAGRA gravitational-wave (GW) observatory was sensitive to binary black hole (BBH) mergers out to redshifts z merge ≈ 1. Because GWs are inefficient at shrinking the binary orbit, some of these BBH systems likely experienced long delay times τ between the formation of their progenitor stars at z form and their GW merger at z merge . In fact, the distribution of delay times predicted by isolated binary evolution resembles a power law <?CDATA $p(\\tau )\\propto {\\tau }^{{\\alpha }_{\\tau }}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>p</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>τ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>∝</mml:mo> <mml:msup> <mml:mrow> <mml:mi>τ</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>τ</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:msup> </mml:math> with slope −1 ≲ α τ ≲ −0.35 and a minimum delay time of <?CDATA ${\\tau }_{\\min }=10\\,\\mathrm{Myr}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mi>τ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>min</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>10</mml:mn> <mml:mspace width=\"0.25em\" /> <mml:mi>Myr</mml:mi> </mml:math> . We use these predicted delay time distributions to infer the formation redshifts of the ∼70 BBH events reported in the third GW transient catalog GWTC-3 and the formation rate of BBH progenitors. For our default α τ = –1 delay time distribution, we find that GWTC-3 contains at least one system (with 90% credibility) that formed earlier than z form > 4.4. Comparing our inferred BBH progenitor formation rate to the star formation rate, we find that at z form = 4, the number of BBH progenitor systems formed per stellar mass was <?CDATA ${6.4}_{-5.5}^{+9.4}\\times {10}^{-6}\\,{M}_{\\odot }^{-1}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msubsup> <mml:mrow> <mml:mn>6.4</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>5.5</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>9.4</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>6</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width=\"0.25em\" /> <mml:msubsup> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> and this yield dropped to <?CDATA ${0.134}_{-0.127}^{+1.6}\\times {10}^{-6}\\,{M}_{\\odot }^{-1}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msubsup> <mml:mrow> <mml:mn>0.134</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.127</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>1.6</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>6</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width=\"0.25em\" /> <mml:msubsup> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> by z form = 0. We discuss implications of this measurement for the cosmic metallicity evolution, finding that for typical assumptions about the metallicity dependence of the BBH yield, the average metallicity at z form = 4 was <?CDATA $\\langle {\\mathrm{log}}_{10}(Z/{Z}_{\\odot })\\rangle =-{0.3}_{-0.4}^{+0.3}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mo stretchy=\"false\">〈</mml:mo> <mml:msub> <mml:mrow> <mml:mi>log</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>Z</mml:mi> <mml:mrow> <mml:mo stretchy=\"true\">/</mml:mo> </mml:mrow> <mml:msub> <mml:mrow> <mml:mi>Z</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">〉</mml:mo> <mml:mo>=</mml:mo> <mml:mo>−</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>0.3</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.4</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.3</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> , although the inferred metallicity can vary by a factor of ≈3 for different assumptions about the BBH yield. Our results highlight the promise of current GW observatories to probe high-redshift star formation.","PeriodicalId":55567,"journal":{"name":"Astrophysical Journal Letters","volume":"289 3","pages":"0"},"PeriodicalIF":8.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"LIGO–Virgo–KAGRA's Oldest Black Holes: Probing Star Formation at Cosmic Noon With GWTC-3\",\"authors\":\"Maya Fishbach, Lieke van Son\",\"doi\":\"10.3847/2041-8213/ad0560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In their third observing run, the LIGO–Virgo–KAGRA gravitational-wave (GW) observatory was sensitive to binary black hole (BBH) mergers out to redshifts z merge ≈ 1. Because GWs are inefficient at shrinking the binary orbit, some of these BBH systems likely experienced long delay times τ between the formation of their progenitor stars at z form and their GW merger at z merge . In fact, the distribution of delay times predicted by isolated binary evolution resembles a power law <?CDATA $p(\\\\tau )\\\\propto {\\\\tau }^{{\\\\alpha }_{\\\\tau }}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>p</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>τ</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>∝</mml:mo> <mml:msup> <mml:mrow> <mml:mi>τ</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>τ</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:msup> </mml:math> with slope −1 ≲ α τ ≲ −0.35 and a minimum delay time of <?CDATA ${\\\\tau }_{\\\\min }=10\\\\,\\\\mathrm{Myr}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mrow> <mml:mi>τ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>min</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>10</mml:mn> <mml:mspace width=\\\"0.25em\\\" /> <mml:mi>Myr</mml:mi> </mml:math> . We use these predicted delay time distributions to infer the formation redshifts of the ∼70 BBH events reported in the third GW transient catalog GWTC-3 and the formation rate of BBH progenitors. For our default α τ = –1 delay time distribution, we find that GWTC-3 contains at least one system (with 90% credibility) that formed earlier than z form > 4.4. Comparing our inferred BBH progenitor formation rate to the star formation rate, we find that at z form = 4, the number of BBH progenitor systems formed per stellar mass was <?CDATA ${6.4}_{-5.5}^{+9.4}\\\\times {10}^{-6}\\\\,{M}_{\\\\odot }^{-1}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:msubsup> <mml:mrow> <mml:mn>6.4</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>5.5</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>9.4</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>6</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width=\\\"0.25em\\\" /> <mml:msubsup> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> and this yield dropped to <?CDATA ${0.134}_{-0.127}^{+1.6}\\\\times {10}^{-6}\\\\,{M}_{\\\\odot }^{-1}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:msubsup> <mml:mrow> <mml:mn>0.134</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.127</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>1.6</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>6</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width=\\\"0.25em\\\" /> <mml:msubsup> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> by z form = 0. We discuss implications of this measurement for the cosmic metallicity evolution, finding that for typical assumptions about the metallicity dependence of the BBH yield, the average metallicity at z form = 4 was <?CDATA $\\\\langle {\\\\mathrm{log}}_{10}(Z/{Z}_{\\\\odot })\\\\rangle =-{0.3}_{-0.4}^{+0.3}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mo stretchy=\\\"false\\\">〈</mml:mo> <mml:msub> <mml:mrow> <mml:mi>log</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>Z</mml:mi> <mml:mrow> <mml:mo stretchy=\\\"true\\\">/</mml:mo> </mml:mrow> <mml:msub> <mml:mrow> <mml:mi>Z</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">〉</mml:mo> <mml:mo>=</mml:mo> <mml:mo>−</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>0.3</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.4</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.3</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> , although the inferred metallicity can vary by a factor of ≈3 for different assumptions about the BBH yield. Our results highlight the promise of current GW observatories to probe high-redshift star formation.\",\"PeriodicalId\":55567,\"journal\":{\"name\":\"Astrophysical Journal Letters\",\"volume\":\"289 3\",\"pages\":\"0\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ad0560\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad0560","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
LIGO–Virgo–KAGRA's Oldest Black Holes: Probing Star Formation at Cosmic Noon With GWTC-3
Abstract In their third observing run, the LIGO–Virgo–KAGRA gravitational-wave (GW) observatory was sensitive to binary black hole (BBH) mergers out to redshifts z merge ≈ 1. Because GWs are inefficient at shrinking the binary orbit, some of these BBH systems likely experienced long delay times τ between the formation of their progenitor stars at z form and their GW merger at z merge . In fact, the distribution of delay times predicted by isolated binary evolution resembles a power law p(τ)∝τατ with slope −1 ≲ α τ ≲ −0.35 and a minimum delay time of τmin=10Myr . We use these predicted delay time distributions to infer the formation redshifts of the ∼70 BBH events reported in the third GW transient catalog GWTC-3 and the formation rate of BBH progenitors. For our default α τ = –1 delay time distribution, we find that GWTC-3 contains at least one system (with 90% credibility) that formed earlier than z form > 4.4. Comparing our inferred BBH progenitor formation rate to the star formation rate, we find that at z form = 4, the number of BBH progenitor systems formed per stellar mass was 6.4−5.5+9.4×10−6M⊙−1 and this yield dropped to 0.134−0.127+1.6×10−6M⊙−1 by z form = 0. We discuss implications of this measurement for the cosmic metallicity evolution, finding that for typical assumptions about the metallicity dependence of the BBH yield, the average metallicity at z form = 4 was 〈log10(Z/Z⊙)〉=−0.3−0.4+0.3 , although the inferred metallicity can vary by a factor of ≈3 for different assumptions about the BBH yield. Our results highlight the promise of current GW observatories to probe high-redshift star formation.
期刊介绍:
The Astrophysical Journal Letters (ApJL) is widely regarded as the foremost journal for swiftly disseminating groundbreaking astronomical research. It focuses on concise reports that highlight pivotal advancements in the field of astrophysics. By prioritizing timeliness and the generation of immediate interest among researchers, ApJL showcases articles featuring novel discoveries and critical findings that have a profound effect on the scientific community. Moreover, ApJL ensures that published articles are comprehensive in their scope, presenting context that can be readily comprehensible to scientists who may not possess expertise in the specific disciplines covered.