LIGO-Virgo-KAGRA最古老的黑洞:用GWTC-3探测宇宙正午的恒星形成

IF 8.8 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astrophysical Journal Letters Pub Date : 2023-11-01 DOI:10.3847/2041-8213/ad0560
Maya Fishbach, Lieke van Son
{"title":"LIGO-Virgo-KAGRA最古老的黑洞:用GWTC-3探测宇宙正午的恒星形成","authors":"Maya Fishbach, Lieke van Son","doi":"10.3847/2041-8213/ad0560","DOIUrl":null,"url":null,"abstract":"Abstract In their third observing run, the LIGO–Virgo–KAGRA gravitational-wave (GW) observatory was sensitive to binary black hole (BBH) mergers out to redshifts z merge ≈ 1. Because GWs are inefficient at shrinking the binary orbit, some of these BBH systems likely experienced long delay times τ between the formation of their progenitor stars at z form and their GW merger at z merge . In fact, the distribution of delay times predicted by isolated binary evolution resembles a power law <?CDATA $p(\\tau )\\propto {\\tau }^{{\\alpha }_{\\tau }}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>p</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>τ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>∝</mml:mo> <mml:msup> <mml:mrow> <mml:mi>τ</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>τ</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:msup> </mml:math> with slope −1 ≲ α τ ≲ −0.35 and a minimum delay time of <?CDATA ${\\tau }_{\\min }=10\\,\\mathrm{Myr}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mi>τ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>min</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>10</mml:mn> <mml:mspace width=\"0.25em\" /> <mml:mi>Myr</mml:mi> </mml:math> . We use these predicted delay time distributions to infer the formation redshifts of the ∼70 BBH events reported in the third GW transient catalog GWTC-3 and the formation rate of BBH progenitors. For our default α τ = –1 delay time distribution, we find that GWTC-3 contains at least one system (with 90% credibility) that formed earlier than z form &gt; 4.4. Comparing our inferred BBH progenitor formation rate to the star formation rate, we find that at z form = 4, the number of BBH progenitor systems formed per stellar mass was <?CDATA ${6.4}_{-5.5}^{+9.4}\\times {10}^{-6}\\,{M}_{\\odot }^{-1}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msubsup> <mml:mrow> <mml:mn>6.4</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>5.5</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>9.4</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>6</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width=\"0.25em\" /> <mml:msubsup> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> and this yield dropped to <?CDATA ${0.134}_{-0.127}^{+1.6}\\times {10}^{-6}\\,{M}_{\\odot }^{-1}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msubsup> <mml:mrow> <mml:mn>0.134</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.127</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>1.6</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>6</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width=\"0.25em\" /> <mml:msubsup> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> by z form = 0. We discuss implications of this measurement for the cosmic metallicity evolution, finding that for typical assumptions about the metallicity dependence of the BBH yield, the average metallicity at z form = 4 was <?CDATA $\\langle {\\mathrm{log}}_{10}(Z/{Z}_{\\odot })\\rangle =-{0.3}_{-0.4}^{+0.3}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mo stretchy=\"false\">〈</mml:mo> <mml:msub> <mml:mrow> <mml:mi>log</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>Z</mml:mi> <mml:mrow> <mml:mo stretchy=\"true\">/</mml:mo> </mml:mrow> <mml:msub> <mml:mrow> <mml:mi>Z</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">〉</mml:mo> <mml:mo>=</mml:mo> <mml:mo>−</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>0.3</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.4</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.3</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> , although the inferred metallicity can vary by a factor of ≈3 for different assumptions about the BBH yield. Our results highlight the promise of current GW observatories to probe high-redshift star formation.","PeriodicalId":55567,"journal":{"name":"Astrophysical Journal Letters","volume":"289 3","pages":"0"},"PeriodicalIF":8.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"LIGO–Virgo–KAGRA's Oldest Black Holes: Probing Star Formation at Cosmic Noon With GWTC-3\",\"authors\":\"Maya Fishbach, Lieke van Son\",\"doi\":\"10.3847/2041-8213/ad0560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In their third observing run, the LIGO–Virgo–KAGRA gravitational-wave (GW) observatory was sensitive to binary black hole (BBH) mergers out to redshifts z merge ≈ 1. Because GWs are inefficient at shrinking the binary orbit, some of these BBH systems likely experienced long delay times τ between the formation of their progenitor stars at z form and their GW merger at z merge . In fact, the distribution of delay times predicted by isolated binary evolution resembles a power law <?CDATA $p(\\\\tau )\\\\propto {\\\\tau }^{{\\\\alpha }_{\\\\tau }}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>p</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>τ</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>∝</mml:mo> <mml:msup> <mml:mrow> <mml:mi>τ</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>τ</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:msup> </mml:math> with slope −1 ≲ α τ ≲ −0.35 and a minimum delay time of <?CDATA ${\\\\tau }_{\\\\min }=10\\\\,\\\\mathrm{Myr}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mrow> <mml:mi>τ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>min</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>10</mml:mn> <mml:mspace width=\\\"0.25em\\\" /> <mml:mi>Myr</mml:mi> </mml:math> . We use these predicted delay time distributions to infer the formation redshifts of the ∼70 BBH events reported in the third GW transient catalog GWTC-3 and the formation rate of BBH progenitors. For our default α τ = –1 delay time distribution, we find that GWTC-3 contains at least one system (with 90% credibility) that formed earlier than z form &gt; 4.4. Comparing our inferred BBH progenitor formation rate to the star formation rate, we find that at z form = 4, the number of BBH progenitor systems formed per stellar mass was <?CDATA ${6.4}_{-5.5}^{+9.4}\\\\times {10}^{-6}\\\\,{M}_{\\\\odot }^{-1}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:msubsup> <mml:mrow> <mml:mn>6.4</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>5.5</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>9.4</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>6</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width=\\\"0.25em\\\" /> <mml:msubsup> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> and this yield dropped to <?CDATA ${0.134}_{-0.127}^{+1.6}\\\\times {10}^{-6}\\\\,{M}_{\\\\odot }^{-1}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:msubsup> <mml:mrow> <mml:mn>0.134</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.127</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>1.6</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>6</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width=\\\"0.25em\\\" /> <mml:msubsup> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> by z form = 0. We discuss implications of this measurement for the cosmic metallicity evolution, finding that for typical assumptions about the metallicity dependence of the BBH yield, the average metallicity at z form = 4 was <?CDATA $\\\\langle {\\\\mathrm{log}}_{10}(Z/{Z}_{\\\\odot })\\\\rangle =-{0.3}_{-0.4}^{+0.3}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mo stretchy=\\\"false\\\">〈</mml:mo> <mml:msub> <mml:mrow> <mml:mi>log</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>Z</mml:mi> <mml:mrow> <mml:mo stretchy=\\\"true\\\">/</mml:mo> </mml:mrow> <mml:msub> <mml:mrow> <mml:mi>Z</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">〉</mml:mo> <mml:mo>=</mml:mo> <mml:mo>−</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>0.3</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.4</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.3</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> , although the inferred metallicity can vary by a factor of ≈3 for different assumptions about the BBH yield. Our results highlight the promise of current GW observatories to probe high-redshift star formation.\",\"PeriodicalId\":55567,\"journal\":{\"name\":\"Astrophysical Journal Letters\",\"volume\":\"289 3\",\"pages\":\"0\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ad0560\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad0560","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

在第三次观测中,LIGO-Virgo-KAGRA引力波(GW)天文台对双黑洞(BBH)并合的红移z合并≈1非常敏感。由于GWs在缩小双星轨道方面效率不高,因此其中一些BBH系统可能在其z形式的祖先恒星形成和z合并时的GW合并之间经历了很长的延迟时间τ。事实上,孤立二元演化预测的延迟时间分布类似于斜率为- 1 > α τ > - 0.35的幂律p (τ)∝τ α τ,最小延迟时间τ min = 10 Myr。我们使用这些预测的延迟时间分布来推断第三个GW瞬变目录GWTC-3中报道的~ 70 BBH事件的形成红移和BBH祖细胞的形成速率。对于我们的默认α τ = -1延迟时间分布,我们发现GWTC-3至少包含一个形成于z形式>之前的系统(具有90%可信度);4.4. 将我们推断的BBH祖星系形成速率与恒星形成速率进行比较,我们发现在z form = 4时,每颗恒星质量形成的BBH祖星系数量为6.4−5.5 + 9.4 × 10−6 M⊙−1,而当z form = 0时,这一产量降至0.134−0.127 + 1.6 × 10−6 M⊙−1。我们讨论了这一测量对宇宙金属丰度演化的影响,发现对于关于BBH产率的金属丰度依赖的典型假设,在z形式= 4时的平均金属丰度< log 10 (z / z⊙)> =−0.3−0.4 + 0.3,尽管推断的金属丰度可以在关于BBH产率的不同假设下≈3的因子变化。我们的结果突出了当前GW天文台探测高红移恒星形成的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LIGO–Virgo–KAGRA's Oldest Black Holes: Probing Star Formation at Cosmic Noon With GWTC-3
Abstract In their third observing run, the LIGO–Virgo–KAGRA gravitational-wave (GW) observatory was sensitive to binary black hole (BBH) mergers out to redshifts z merge ≈ 1. Because GWs are inefficient at shrinking the binary orbit, some of these BBH systems likely experienced long delay times τ between the formation of their progenitor stars at z form and their GW merger at z merge . In fact, the distribution of delay times predicted by isolated binary evolution resembles a power law p ( τ ) τ α τ with slope −1 ≲ α τ ≲ −0.35 and a minimum delay time of τ min = 10 Myr . We use these predicted delay time distributions to infer the formation redshifts of the ∼70 BBH events reported in the third GW transient catalog GWTC-3 and the formation rate of BBH progenitors. For our default α τ = –1 delay time distribution, we find that GWTC-3 contains at least one system (with 90% credibility) that formed earlier than z form > 4.4. Comparing our inferred BBH progenitor formation rate to the star formation rate, we find that at z form = 4, the number of BBH progenitor systems formed per stellar mass was 6.4 5.5 + 9.4 × 10 6 M 1 and this yield dropped to 0.134 0.127 + 1.6 × 10 6 M 1 by z form = 0. We discuss implications of this measurement for the cosmic metallicity evolution, finding that for typical assumptions about the metallicity dependence of the BBH yield, the average metallicity at z form = 4 was log 10 ( Z / Z ) = 0.3 0.4 + 0.3 , although the inferred metallicity can vary by a factor of ≈3 for different assumptions about the BBH yield. Our results highlight the promise of current GW observatories to probe high-redshift star formation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrophysical Journal Letters
Astrophysical Journal Letters ASTRONOMY & ASTROPHYSICS-
CiteScore
14.10
自引率
6.30%
发文量
513
审稿时长
2-3 weeks
期刊介绍: The Astrophysical Journal Letters (ApJL) is widely regarded as the foremost journal for swiftly disseminating groundbreaking astronomical research. It focuses on concise reports that highlight pivotal advancements in the field of astrophysics. By prioritizing timeliness and the generation of immediate interest among researchers, ApJL showcases articles featuring novel discoveries and critical findings that have a profound effect on the scientific community. Moreover, ApJL ensures that published articles are comprehensive in their scope, presenting context that can be readily comprehensible to scientists who may not possess expertise in the specific disciplines covered.
期刊最新文献
Irregular Proton Injection to High Energies at Interplanetary Shocks Betatron Acceleration of Suprathermal Electrons within a Small-scale Flux Rope in the Solar Wind Spatial Extent of Molecular Gas, Dust, and Stars in Massive Galaxies at z ∼ 2.2–2.5 Determined with ALMA and JWST A Formation Mechanism for “Wrong Way” Radio Relics Is the M81 Fast Radio Burst Host Globular Cluster Special?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1