智能农业和纳米技术:技术、挑战和新视角

Shivani Garg , Nelson Pynadathu Rumjit , Swapnila Roy
{"title":"智能农业和纳米技术:技术、挑战和新视角","authors":"Shivani Garg ,&nbsp;Nelson Pynadathu Rumjit ,&nbsp;Swapnila Roy","doi":"10.1016/j.aac.2023.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>In the recent past, much nanotechnology research has been done in an effort to increase agricultural productivity. The Green Revolution led to the careless use of pesticides and artificial fertilizers, which reduced soil biodiversity and led to the development of disease and insect resistance. This article highlights the worldwide development and status of precision agriculture. Precision agriculture utilizes technologies and principles to manage spatial and temporal variability in agricultural production to improve crop performance and environmental quality. In precision agriculture (PA), information technology (IT) is used to make sure that crops and soil receive exactly what they require for optimal productivity and health. Precision farming includes the use of hardware i.e., a global positioning system (GPS) and geographic information system (GIS), different software of GIS, and traditional knowledge of agriculture management practices. The benefits of precision agriculture can be seen in both the economic and environmental aspects of agricultural production. Only nanoparticles or nanochips can transport materials to plants in a nanoparticle-mediated manner and create sophisticated biosensors for precision farming. Conventional fertilizers, insecticides, and herbicides can be nano encapsulated to provide exact doses to plants through a gradual, continuous release of nutrients and agrochemicals. The main topics included in this article are the variability of natural resources, variability management; administrative districts; the impact of precision farming technologies on farm profitability and the environment; innovations in sensors, controls, and remote sensing, information management; trends in global application and acceptance of precision farming technologies; potential and possibilities of technology along with challenges in agricultural modernization. Modern equipment and procedures based on nanotechnology have the ability to solve many of the issues in conventional agriculture and might transform this industry. There are many challenges in the implementation of smart agriculture equipment and approaches in the field as this technique uses both hardware and software. The cost of labour for managing IoT devices and the cost-of-service registration are included in the system operational cost. Additionally, there are operating costs related to the use of energy, maintenance, and communication between IoT devices, gateways, and cloud servers. In this review, nanotechnology is explored as a potential tool in precision agriculture, as well as the advantages of nanoparticles in agriculture, such as the use of fertilizers. By using precision agriculture, the food production chain can be monitored and quality and quantity can be managed effectively.</p></div>","PeriodicalId":100027,"journal":{"name":"Advanced Agrochem","volume":"3 2","pages":"Pages 115-125"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773237123000825/pdfft?md5=210709003a14ac4686c89c24eaed6fc1&pid=1-s2.0-S2773237123000825-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Smart agriculture and nanotechnology: Technology, challenges, and new perspective\",\"authors\":\"Shivani Garg ,&nbsp;Nelson Pynadathu Rumjit ,&nbsp;Swapnila Roy\",\"doi\":\"10.1016/j.aac.2023.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the recent past, much nanotechnology research has been done in an effort to increase agricultural productivity. The Green Revolution led to the careless use of pesticides and artificial fertilizers, which reduced soil biodiversity and led to the development of disease and insect resistance. This article highlights the worldwide development and status of precision agriculture. Precision agriculture utilizes technologies and principles to manage spatial and temporal variability in agricultural production to improve crop performance and environmental quality. In precision agriculture (PA), information technology (IT) is used to make sure that crops and soil receive exactly what they require for optimal productivity and health. Precision farming includes the use of hardware i.e., a global positioning system (GPS) and geographic information system (GIS), different software of GIS, and traditional knowledge of agriculture management practices. The benefits of precision agriculture can be seen in both the economic and environmental aspects of agricultural production. Only nanoparticles or nanochips can transport materials to plants in a nanoparticle-mediated manner and create sophisticated biosensors for precision farming. Conventional fertilizers, insecticides, and herbicides can be nano encapsulated to provide exact doses to plants through a gradual, continuous release of nutrients and agrochemicals. The main topics included in this article are the variability of natural resources, variability management; administrative districts; the impact of precision farming technologies on farm profitability and the environment; innovations in sensors, controls, and remote sensing, information management; trends in global application and acceptance of precision farming technologies; potential and possibilities of technology along with challenges in agricultural modernization. Modern equipment and procedures based on nanotechnology have the ability to solve many of the issues in conventional agriculture and might transform this industry. There are many challenges in the implementation of smart agriculture equipment and approaches in the field as this technique uses both hardware and software. The cost of labour for managing IoT devices and the cost-of-service registration are included in the system operational cost. Additionally, there are operating costs related to the use of energy, maintenance, and communication between IoT devices, gateways, and cloud servers. In this review, nanotechnology is explored as a potential tool in precision agriculture, as well as the advantages of nanoparticles in agriculture, such as the use of fertilizers. By using precision agriculture, the food production chain can be monitored and quality and quantity can be managed effectively.</p></div>\",\"PeriodicalId\":100027,\"journal\":{\"name\":\"Advanced Agrochem\",\"volume\":\"3 2\",\"pages\":\"Pages 115-125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773237123000825/pdfft?md5=210709003a14ac4686c89c24eaed6fc1&pid=1-s2.0-S2773237123000825-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Agrochem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773237123000825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Agrochem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773237123000825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,为了提高农业生产率,人们开展了大量纳米技术研究。绿色革命导致杀虫剂和人工肥料的粗放使用,从而减少了土壤的生物多样性,并导致病虫害抗药性的产生。本文重点介绍精准农业在全球的发展和现状。精准农业利用各种技术和原理来管理农业生产中的时空变异性,以提高作物产量和环境质量。在精准农业(PA)中,信息技术(IT)被用来确保作物和土壤能够准确地获得最佳的生产力和健康状况。精准农业包括使用硬件,即全球定位系统(GPS)和地理信息系统(GIS)、GIS 的不同软件以及农业管理实践的传统知识。精准农业的好处体现在农业生产的经济和环境两个方面。只有纳米微粒或纳米芯片才能以纳米微粒为媒介向植物输送物质,并为精准农业创造精密的生物传感器。传统的肥料、杀虫剂和除草剂都可以用纳米封装,通过逐步、持续地释放养分和农用化学品,为植物提供精确的剂量。本文的主要议题包括:自然资源的可变性、可变性管理;行政区划;精准农业技术对农业盈利能力和环境的影响;传感器、控制和遥感、信息管理方面的创新;精准农业技术的全球应用和接受趋势;技术的潜力和可能性以及农业现代化面临的挑战。基于纳米技术的现代设备和程序有能力解决传统农业中的许多问题,并有可能改变这一行业。在实地实施智能农业设备和方法方面存在许多挑战,因为这种技术同时使用硬件和软件。系统运营成本中包括管理物联网设备的人工成本和服务注册成本。此外,还有与能源使用、维护以及物联网设备、网关和云服务器之间的通信有关的运营成本。本综述探讨了纳米技术作为精准农业的潜在工具,以及纳米粒子在农业中的优势,如肥料的使用。通过使用精准农业,可以对食品生产链进行监控,并对质量和数量进行有效管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smart agriculture and nanotechnology: Technology, challenges, and new perspective

In the recent past, much nanotechnology research has been done in an effort to increase agricultural productivity. The Green Revolution led to the careless use of pesticides and artificial fertilizers, which reduced soil biodiversity and led to the development of disease and insect resistance. This article highlights the worldwide development and status of precision agriculture. Precision agriculture utilizes technologies and principles to manage spatial and temporal variability in agricultural production to improve crop performance and environmental quality. In precision agriculture (PA), information technology (IT) is used to make sure that crops and soil receive exactly what they require for optimal productivity and health. Precision farming includes the use of hardware i.e., a global positioning system (GPS) and geographic information system (GIS), different software of GIS, and traditional knowledge of agriculture management practices. The benefits of precision agriculture can be seen in both the economic and environmental aspects of agricultural production. Only nanoparticles or nanochips can transport materials to plants in a nanoparticle-mediated manner and create sophisticated biosensors for precision farming. Conventional fertilizers, insecticides, and herbicides can be nano encapsulated to provide exact doses to plants through a gradual, continuous release of nutrients and agrochemicals. The main topics included in this article are the variability of natural resources, variability management; administrative districts; the impact of precision farming technologies on farm profitability and the environment; innovations in sensors, controls, and remote sensing, information management; trends in global application and acceptance of precision farming technologies; potential and possibilities of technology along with challenges in agricultural modernization. Modern equipment and procedures based on nanotechnology have the ability to solve many of the issues in conventional agriculture and might transform this industry. There are many challenges in the implementation of smart agriculture equipment and approaches in the field as this technique uses both hardware and software. The cost of labour for managing IoT devices and the cost-of-service registration are included in the system operational cost. Additionally, there are operating costs related to the use of energy, maintenance, and communication between IoT devices, gateways, and cloud servers. In this review, nanotechnology is explored as a potential tool in precision agriculture, as well as the advantages of nanoparticles in agriculture, such as the use of fertilizers. By using precision agriculture, the food production chain can be monitored and quality and quantity can be managed effectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
期刊最新文献
Discovery of 4-Hydroxyphenylpyruvate dioxygenase inhibitors with novel pharmacophores Design, synthesis and bioactivity of cyclic dinucleotides against Lepidoptera insects Nature: Zinc-mediated regulation of nitrogen fixation through transcription factor filamentation in legumes Antimicrobial metabolites produced by the plant growth-promoting rhizobacteria (PGPR): Bacillus and Pseudomonas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1