基于用户偏好的异构网络垂直切换管理系统

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Electrical and Computer Engineering Pub Date : 2023-10-20 DOI:10.1155/2023/5551773
Samuel Ndegwa, Kumbirayi Nyachionjeka, Edwell T. Mharakurwa
{"title":"基于用户偏好的异构网络垂直切换管理系统","authors":"Samuel Ndegwa, Kumbirayi Nyachionjeka, Edwell T. Mharakurwa","doi":"10.1155/2023/5551773","DOIUrl":null,"url":null,"abstract":"Vertical handover management plays an essential role in wireless network technologies, mainly due to the rapid development of various radio access technologies (RATs) that require users to connect seamlessly from one RAT to another. However, in multiple RAT environments, vertical handover management encounters different challenges, including unnecessary handovers, handover failures, ping-pong handovers, and unsuitable access network selection. Essential in vertical handover management is maintaining the desired quality of service (QoS) by the mobile device user. The seamless movement of mobile device users as they run various applications depends on a well-performing vertical handover decision-making algorithm. This bears special significance in a heterogeneous network environment. This paper proposes a vertical handover algorithm that considers user preferences (i.e., a vertical handover algorithm that evaluates the application currently running on a user device). The main objective of the algorithm is to determine when it is necessary to perform the handover, depending on the applications running on the mobile device. The proposed algorithm utilizes a fuzzy logic system to assess whether the handover is necessary and a multiattribute decision-making (MADM) method to select the best available radio access network. A simulation scenario involving different applications at various mobile device velocities was developed. The results proved the algorithm’s effectiveness compared to some of the earlier proposed vertical handover algorithms. At velocities below 10 m/s and 30 m/s, the proposed algorithm had 0% and 15.02% unnecessary handovers, respectively, while the technique for order preference by similarity to ideal solution (TOPSIS) utility’s function-based algorithm obtained 12.38% and 23.24% at the same velocities, respectively. In addition, compared to TOPSIS, the obtained results of the proposed algorithm demonstrated a lower handover failure rate and ping-pong rate for a velocity span of 1–30 m/s for the considered user applications.","PeriodicalId":46573,"journal":{"name":"Journal of Electrical and Computer Engineering","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"User Preference-Based Heterogeneous Network Management System for Vertical Handover\",\"authors\":\"Samuel Ndegwa, Kumbirayi Nyachionjeka, Edwell T. Mharakurwa\",\"doi\":\"10.1155/2023/5551773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vertical handover management plays an essential role in wireless network technologies, mainly due to the rapid development of various radio access technologies (RATs) that require users to connect seamlessly from one RAT to another. However, in multiple RAT environments, vertical handover management encounters different challenges, including unnecessary handovers, handover failures, ping-pong handovers, and unsuitable access network selection. Essential in vertical handover management is maintaining the desired quality of service (QoS) by the mobile device user. The seamless movement of mobile device users as they run various applications depends on a well-performing vertical handover decision-making algorithm. This bears special significance in a heterogeneous network environment. This paper proposes a vertical handover algorithm that considers user preferences (i.e., a vertical handover algorithm that evaluates the application currently running on a user device). The main objective of the algorithm is to determine when it is necessary to perform the handover, depending on the applications running on the mobile device. The proposed algorithm utilizes a fuzzy logic system to assess whether the handover is necessary and a multiattribute decision-making (MADM) method to select the best available radio access network. A simulation scenario involving different applications at various mobile device velocities was developed. The results proved the algorithm’s effectiveness compared to some of the earlier proposed vertical handover algorithms. At velocities below 10 m/s and 30 m/s, the proposed algorithm had 0% and 15.02% unnecessary handovers, respectively, while the technique for order preference by similarity to ideal solution (TOPSIS) utility’s function-based algorithm obtained 12.38% and 23.24% at the same velocities, respectively. In addition, compared to TOPSIS, the obtained results of the proposed algorithm demonstrated a lower handover failure rate and ping-pong rate for a velocity span of 1–30 m/s for the considered user applications.\",\"PeriodicalId\":46573,\"journal\":{\"name\":\"Journal of Electrical and Computer Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5551773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5551773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

垂直切换管理在无线网络技术中起着至关重要的作用,这主要是由于各种无线接入技术(RAT)的快速发展,要求用户在一个RAT之间无缝连接到另一个RAT。然而,在多种RAT环境下,垂直切换管理面临着不同的挑战,包括不必要的切换、切换失败、乒乓切换、接入网选择不当等。垂直切换管理的关键是保持移动设备用户期望的服务质量(QoS)。移动设备用户在运行各种应用程序时的无缝移动依赖于性能良好的垂直切换决策算法。这在异构网络环境中具有特殊的意义。本文提出了一种考虑用户偏好的垂直切换算法(即评估当前在用户设备上运行的应用程序的垂直切换算法)。该算法的主要目标是根据移动设备上运行的应用程序确定何时需要执行切换。该算法利用模糊逻辑系统评估切换是否必要,并利用多属性决策方法选择最佳可用无线接入网。开发了一个模拟场景,涉及不同移动设备速度下的不同应用程序。实验结果证明了该算法与之前提出的一些垂直切换算法相比的有效性。在速度低于10 m/s和30 m/s时,该算法的不必要切换率分别为0%和15.02%,而基于TOPSIS效用函数的排序偏好算法在相同速度下的不必要切换率分别为12.38%和23.24%。此外,与TOPSIS相比,该算法在1 ~ 30 m/s的速度范围内具有较低的切换失败率和乒乓率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
User Preference-Based Heterogeneous Network Management System for Vertical Handover
Vertical handover management plays an essential role in wireless network technologies, mainly due to the rapid development of various radio access technologies (RATs) that require users to connect seamlessly from one RAT to another. However, in multiple RAT environments, vertical handover management encounters different challenges, including unnecessary handovers, handover failures, ping-pong handovers, and unsuitable access network selection. Essential in vertical handover management is maintaining the desired quality of service (QoS) by the mobile device user. The seamless movement of mobile device users as they run various applications depends on a well-performing vertical handover decision-making algorithm. This bears special significance in a heterogeneous network environment. This paper proposes a vertical handover algorithm that considers user preferences (i.e., a vertical handover algorithm that evaluates the application currently running on a user device). The main objective of the algorithm is to determine when it is necessary to perform the handover, depending on the applications running on the mobile device. The proposed algorithm utilizes a fuzzy logic system to assess whether the handover is necessary and a multiattribute decision-making (MADM) method to select the best available radio access network. A simulation scenario involving different applications at various mobile device velocities was developed. The results proved the algorithm’s effectiveness compared to some of the earlier proposed vertical handover algorithms. At velocities below 10 m/s and 30 m/s, the proposed algorithm had 0% and 15.02% unnecessary handovers, respectively, while the technique for order preference by similarity to ideal solution (TOPSIS) utility’s function-based algorithm obtained 12.38% and 23.24% at the same velocities, respectively. In addition, compared to TOPSIS, the obtained results of the proposed algorithm demonstrated a lower handover failure rate and ping-pong rate for a velocity span of 1–30 m/s for the considered user applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electrical and Computer Engineering
Journal of Electrical and Computer Engineering COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
4.20
自引率
0.00%
发文量
152
审稿时长
19 weeks
期刊最新文献
Network Intrusion Detection Using Knapsack Optimization, Mutual Information Gain, and Machine Learning Electronically Tunable Grounded and Floating Capacitance Multipliers Using a Single Active Element A Novel Technique for Facial Recognition Based on the GSO-CNN Deep Learning Algorithm Simulation Analysis of Arc-Quenching Performance of Eco-Friendly Insulating Gas Mixture of CF3I and CO2 under Impulse Arc Balancing Data Privacy and 5G VNFs Security Monitoring: Federated Learning with CNN + BiLSTM + LSTM Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1