{"title":"前缘壁面冷却对前台阶激波-边界层相互作用影响的计算研究","authors":"Vinoth Kumar P, Jayaprakash N Murugan","doi":"10.1177/09544100231206567","DOIUrl":null,"url":null,"abstract":"A computational study has been done to understand the effect of leading-edge wall cooling on shock wave–boundary layer interaction. Shock wave–boundary layer interaction is studied over a forward-facing step at supersonic Mach 2.5. The study was carried out using Ansys. The work aims to explore the implementation of wall cooling at the leading edge as a separation control strategy for supersonic forward-facing step-induced flow separation. We use a finite-volume method based on upwind flux difference splitting and second-order upwind flow discretization. The simulation results are validated with the available experimental data. Furthermore, using numerical simulations, we found that the separation bubble size was reduced by 18.36% when the walls were marginally cooled to 150 K, while the separation was reduced by 32.65% when the walls were strongly cooled to 100 K.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A computational study of leading-edge wall cooling effect on shock wave–boundary layer interaction in forward-facing step\",\"authors\":\"Vinoth Kumar P, Jayaprakash N Murugan\",\"doi\":\"10.1177/09544100231206567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A computational study has been done to understand the effect of leading-edge wall cooling on shock wave–boundary layer interaction. Shock wave–boundary layer interaction is studied over a forward-facing step at supersonic Mach 2.5. The study was carried out using Ansys. The work aims to explore the implementation of wall cooling at the leading edge as a separation control strategy for supersonic forward-facing step-induced flow separation. We use a finite-volume method based on upwind flux difference splitting and second-order upwind flow discretization. The simulation results are validated with the available experimental data. Furthermore, using numerical simulations, we found that the separation bubble size was reduced by 18.36% when the walls were marginally cooled to 150 K, while the separation was reduced by 32.65% when the walls were strongly cooled to 100 K.\",\"PeriodicalId\":54566,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09544100231206567\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544100231206567","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
A computational study of leading-edge wall cooling effect on shock wave–boundary layer interaction in forward-facing step
A computational study has been done to understand the effect of leading-edge wall cooling on shock wave–boundary layer interaction. Shock wave–boundary layer interaction is studied over a forward-facing step at supersonic Mach 2.5. The study was carried out using Ansys. The work aims to explore the implementation of wall cooling at the leading edge as a separation control strategy for supersonic forward-facing step-induced flow separation. We use a finite-volume method based on upwind flux difference splitting and second-order upwind flow discretization. The simulation results are validated with the available experimental data. Furthermore, using numerical simulations, we found that the separation bubble size was reduced by 18.36% when the walls were marginally cooled to 150 K, while the separation was reduced by 32.65% when the walls were strongly cooled to 100 K.
期刊介绍:
The Journal of Aerospace Engineering is dedicated to the publication of high quality research in all branches of applied sciences and technology dealing with aircraft and spacecraft, and their support systems. "Our authorship is truly international and all efforts are made to ensure that each paper is presented in the best possible way and reaches a wide audience.
"The Editorial Board is composed of recognized experts representing the technical communities of fifteen countries. The Board Members work in close cooperation with the editors, reviewers, and authors to achieve a consistent standard of well written and presented papers."Professor Rodrigo Martinez-Val, Universidad Politécnica de Madrid, Spain
This journal is a member of the Committee on Publication Ethics (COPE).