Muhammad Saad Chughtai, Irfana Bibi, Shahid Karim, Syed Wajid Ali Shah, Asif Ali Laghari, Abdullah Ayub Khan
{"title":"深度学习趋势和网络安全和漏洞的未来前景","authors":"Muhammad Saad Chughtai, Irfana Bibi, Shahid Karim, Syed Wajid Ali Shah, Asif Ali Laghari, Abdullah Ayub Khan","doi":"10.3233/jhs-230037","DOIUrl":null,"url":null,"abstract":"Web applications play a vital role in modern digital world. Their pervasiveness is mainly underpinned by numerous technological advances that can often lead to misconfigurations, thereby opening a way for a variety of attack vectors. The rapid development of E-commerce, big data, cloud computing and other technologies, further enterprise services are entering to the internet world and have increasingly become the key targets of network attacks. Therefore, the appropriate remedies are essential to maintain the very fabric of security in digital world. This paper aims to identify such vulnerabilities that need to be addressed for ensuring the web security. We identify and compare the static, dynamic, and hybrid tools that can counter the prevalent attacks perpetrated through the identified vulnerabilities. Additionally, we also review the applications of AI in intrusion detection and pinpoint the research gaps. Finally, we cross-compare the various security models and highlight the relevant future research directions.","PeriodicalId":54809,"journal":{"name":"Journal of High Speed Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning trends and future perspectives of web security and vulnerabilities\",\"authors\":\"Muhammad Saad Chughtai, Irfana Bibi, Shahid Karim, Syed Wajid Ali Shah, Asif Ali Laghari, Abdullah Ayub Khan\",\"doi\":\"10.3233/jhs-230037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web applications play a vital role in modern digital world. Their pervasiveness is mainly underpinned by numerous technological advances that can often lead to misconfigurations, thereby opening a way for a variety of attack vectors. The rapid development of E-commerce, big data, cloud computing and other technologies, further enterprise services are entering to the internet world and have increasingly become the key targets of network attacks. Therefore, the appropriate remedies are essential to maintain the very fabric of security in digital world. This paper aims to identify such vulnerabilities that need to be addressed for ensuring the web security. We identify and compare the static, dynamic, and hybrid tools that can counter the prevalent attacks perpetrated through the identified vulnerabilities. Additionally, we also review the applications of AI in intrusion detection and pinpoint the research gaps. Finally, we cross-compare the various security models and highlight the relevant future research directions.\",\"PeriodicalId\":54809,\"journal\":{\"name\":\"Journal of High Speed Networks\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Speed Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jhs-230037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Speed Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jhs-230037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Deep learning trends and future perspectives of web security and vulnerabilities
Web applications play a vital role in modern digital world. Their pervasiveness is mainly underpinned by numerous technological advances that can often lead to misconfigurations, thereby opening a way for a variety of attack vectors. The rapid development of E-commerce, big data, cloud computing and other technologies, further enterprise services are entering to the internet world and have increasingly become the key targets of network attacks. Therefore, the appropriate remedies are essential to maintain the very fabric of security in digital world. This paper aims to identify such vulnerabilities that need to be addressed for ensuring the web security. We identify and compare the static, dynamic, and hybrid tools that can counter the prevalent attacks perpetrated through the identified vulnerabilities. Additionally, we also review the applications of AI in intrusion detection and pinpoint the research gaps. Finally, we cross-compare the various security models and highlight the relevant future research directions.
期刊介绍:
The Journal of High Speed Networks is an international archival journal, active since 1992, providing a publication vehicle for covering a large number of topics of interest in the high performance networking and communication area. Its audience includes researchers, managers as well as network designers and operators. The main goal will be to provide timely dissemination of information and scientific knowledge.
The journal will publish contributed papers on novel research, survey and position papers on topics of current interest, technical notes, and short communications to report progress on long-term projects. Submissions to the Journal will be refereed consistently with the review process of leading technical journals, based on originality, significance, quality, and clarity.
The journal will publish papers on a number of topics ranging from design to practical experiences with operational high performance/speed networks.