具有大量物理观测的计算机模型的快速校准

IF 2.1 3区 工程技术 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Siam-Asa Journal on Uncertainty Quantification Pub Date : 2023-09-27 DOI:10.1137/22m153673x
Shurui Lv, Jun Yu, Yan Wang, Jiang Du
{"title":"具有大量物理观测的计算机模型的快速校准","authors":"Shurui Lv, Jun Yu, Yan Wang, Jiang Du","doi":"10.1137/22m153673x","DOIUrl":null,"url":null,"abstract":"Computer model calibration is a crucial step in building a reliable computer model. In the face of massive physical observations, a fast estimation of the calibration parameters is urgently needed. To alleviate the computational burden, we design a two-step algorithm to estimate the calibration parameters by employing the subsampling techniques. Compared with the current state-of-the-art calibration methods, the complexity of the proposed algorithm is greatly reduced without sacrificing too much accuracy. We prove the consistency and asymptotic normality of the proposed estimator. The form of the variance of the proposed estimation is also presented, which provides a natural way to quantify the uncertainty of the calibration parameters. The obtained results of two numerical simulations and two real-case studies demonstrate the advantages of the proposed method.","PeriodicalId":56064,"journal":{"name":"Siam-Asa Journal on Uncertainty Quantification","volume":"48 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Calibration for Computer Models with Massive Physical Observations\",\"authors\":\"Shurui Lv, Jun Yu, Yan Wang, Jiang Du\",\"doi\":\"10.1137/22m153673x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer model calibration is a crucial step in building a reliable computer model. In the face of massive physical observations, a fast estimation of the calibration parameters is urgently needed. To alleviate the computational burden, we design a two-step algorithm to estimate the calibration parameters by employing the subsampling techniques. Compared with the current state-of-the-art calibration methods, the complexity of the proposed algorithm is greatly reduced without sacrificing too much accuracy. We prove the consistency and asymptotic normality of the proposed estimator. The form of the variance of the proposed estimation is also presented, which provides a natural way to quantify the uncertainty of the calibration parameters. The obtained results of two numerical simulations and two real-case studies demonstrate the advantages of the proposed method.\",\"PeriodicalId\":56064,\"journal\":{\"name\":\"Siam-Asa Journal on Uncertainty Quantification\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam-Asa Journal on Uncertainty Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m153673x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam-Asa Journal on Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m153673x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

计算机模型标定是建立可靠的计算机模型的关键步骤。面对大量的物理观测,迫切需要快速估计校准参数。为了减轻计算负担,我们设计了一种采用次采样技术的两步算法来估计校准参数。与目前最先进的标定方法相比,在不牺牲太多精度的情况下,大大降低了算法的复杂性。我们证明了所提估计量的相合性和渐近正态性。给出了所提估计的方差形式,为标定参数的不确定度提供了一种自然的量化方法。两个数值模拟和两个实际案例的结果表明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast Calibration for Computer Models with Massive Physical Observations
Computer model calibration is a crucial step in building a reliable computer model. In the face of massive physical observations, a fast estimation of the calibration parameters is urgently needed. To alleviate the computational burden, we design a two-step algorithm to estimate the calibration parameters by employing the subsampling techniques. Compared with the current state-of-the-art calibration methods, the complexity of the proposed algorithm is greatly reduced without sacrificing too much accuracy. We prove the consistency and asymptotic normality of the proposed estimator. The form of the variance of the proposed estimation is also presented, which provides a natural way to quantify the uncertainty of the calibration parameters. The obtained results of two numerical simulations and two real-case studies demonstrate the advantages of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Siam-Asa Journal on Uncertainty Quantification
Siam-Asa Journal on Uncertainty Quantification Mathematics-Statistics and Probability
CiteScore
3.70
自引率
0.00%
发文量
51
期刊介绍: SIAM/ASA Journal on Uncertainty Quantification (JUQ) publishes research articles presenting significant mathematical, statistical, algorithmic, and application advances in uncertainty quantification, defined as the interface of complex modeling of processes and data, especially characterizations of the uncertainties inherent in the use of such models. The journal also focuses on related fields such as sensitivity analysis, model validation, model calibration, data assimilation, and code verification. The journal also solicits papers describing new ideas that could lead to significant progress in methodology for uncertainty quantification as well as review articles on particular aspects. The journal is dedicated to nurturing synergistic interactions between the mathematical, statistical, computational, and applications communities involved in uncertainty quantification and related areas. JUQ is jointly offered by SIAM and the American Statistical Association.
期刊最新文献
The Bayesian Approach to Inverse Robin Problems Covariance Expressions for Multifidelity Sampling with Multioutput, Multistatistic Estimators: Application to Approximate Control Variates Parameter Inference Based on Gaussian Processes Informed by Nonlinear Partial Differential Equations Adaptive Multilevel Subset Simulation with Selective Refinement A Fully Parallelized and Budgeted Multilevel Monte Carlo Method and the Application to Acoustic Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1