{"title":"基于全局和局部域自适应网络的交叉风力发电机组故障诊断","authors":"Dandan Peng, Wim Desmet, Konstantinos Gryllias","doi":"10.1115/1.4063578","DOIUrl":null,"url":null,"abstract":"Abstract Operating under harsh conditions and exposed to fluctuating loads for extended periods, wind turbines experience a heightened vulnerability in their key components. Early fault detection is crucial to enhance the reliability of wind turbines, minimize downtime, and optimize power generation efficiency. Although deep learning techniques have been widely applied to fault diagnosis tasks, yielding remarkable performance, practical implementations frequently confront the obstacle of acquiring a substantial quantity of labeled data to train an effective deep learning model. Consequently, this paper introduces an unsupervised global and local domain adaptation network (GLDAN) for fault diagnosis across wind turbines, enabling the model to efficiently transfer acquired knowledge to the target domain in the absence of labeled data. This feature renders it an appropriate solution for situations with limited labeled data availability. Employing adversarial training, GLDAN aligns global domain distributions, diminishing the overall discrepancy between source and target domains, and local domain distributions within a single fault category for both domains, capturing more intricate and specific fault features. The proposed approach is corroborated using actual wind farm data, and comprehensive experimental results demonstrate that GLDAN surpasses deep global domain adaptation methods in cross-wind turbine fault diagnosis, underlining its practical value in the field.","PeriodicalId":15685,"journal":{"name":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","volume":"24 2","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gldan: Global and Local Domain Adaptation Network for Cross-Wind Turbine Fault Diagnosis\",\"authors\":\"Dandan Peng, Wim Desmet, Konstantinos Gryllias\",\"doi\":\"10.1115/1.4063578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Operating under harsh conditions and exposed to fluctuating loads for extended periods, wind turbines experience a heightened vulnerability in their key components. Early fault detection is crucial to enhance the reliability of wind turbines, minimize downtime, and optimize power generation efficiency. Although deep learning techniques have been widely applied to fault diagnosis tasks, yielding remarkable performance, practical implementations frequently confront the obstacle of acquiring a substantial quantity of labeled data to train an effective deep learning model. Consequently, this paper introduces an unsupervised global and local domain adaptation network (GLDAN) for fault diagnosis across wind turbines, enabling the model to efficiently transfer acquired knowledge to the target domain in the absence of labeled data. This feature renders it an appropriate solution for situations with limited labeled data availability. Employing adversarial training, GLDAN aligns global domain distributions, diminishing the overall discrepancy between source and target domains, and local domain distributions within a single fault category for both domains, capturing more intricate and specific fault features. The proposed approach is corroborated using actual wind farm data, and comprehensive experimental results demonstrate that GLDAN surpasses deep global domain adaptation methods in cross-wind turbine fault diagnosis, underlining its practical value in the field.\",\"PeriodicalId\":15685,\"journal\":{\"name\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"volume\":\"24 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063578\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063578","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Gldan: Global and Local Domain Adaptation Network for Cross-Wind Turbine Fault Diagnosis
Abstract Operating under harsh conditions and exposed to fluctuating loads for extended periods, wind turbines experience a heightened vulnerability in their key components. Early fault detection is crucial to enhance the reliability of wind turbines, minimize downtime, and optimize power generation efficiency. Although deep learning techniques have been widely applied to fault diagnosis tasks, yielding remarkable performance, practical implementations frequently confront the obstacle of acquiring a substantial quantity of labeled data to train an effective deep learning model. Consequently, this paper introduces an unsupervised global and local domain adaptation network (GLDAN) for fault diagnosis across wind turbines, enabling the model to efficiently transfer acquired knowledge to the target domain in the absence of labeled data. This feature renders it an appropriate solution for situations with limited labeled data availability. Employing adversarial training, GLDAN aligns global domain distributions, diminishing the overall discrepancy between source and target domains, and local domain distributions within a single fault category for both domains, capturing more intricate and specific fault features. The proposed approach is corroborated using actual wind farm data, and comprehensive experimental results demonstrate that GLDAN surpasses deep global domain adaptation methods in cross-wind turbine fault diagnosis, underlining its practical value in the field.
期刊介绍:
The ASME Journal of Engineering for Gas Turbines and Power publishes archival-quality papers in the areas of gas and steam turbine technology, nuclear engineering, internal combustion engines, and fossil power generation. It covers a broad spectrum of practical topics of interest to industry. Subject areas covered include: thermodynamics; fluid mechanics; heat transfer; and modeling; propulsion and power generation components and systems; combustion, fuels, and emissions; nuclear reactor systems and components; thermal hydraulics; heat exchangers; nuclear fuel technology and waste management; I. C. engines for marine, rail, and power generation; steam and hydro power generation; advanced cycles for fossil energy generation; pollution control and environmental effects.