马来西亚普特拉贾亚湖细菌群落的理化影响

IF 0.6 Q3 MULTIDISCIPLINARY SCIENCES Pertanika Journal of Science and Technology Pub Date : 2023-11-06 DOI:10.47836/pjst.32.1.01
Nurul Najwa Farihah Mat Lazim, Afiqah Mohamed, Zana Ruhaizat Zana Rudin, Fatimah Md Yusoff, Ikhsan Natrah, Shahrizim Zulkifly
{"title":"马来西亚普特拉贾亚湖细菌群落的理化影响","authors":"Nurul Najwa Farihah Mat Lazim, Afiqah Mohamed, Zana Ruhaizat Zana Rudin, Fatimah Md Yusoff, Ikhsan Natrah, Shahrizim Zulkifly","doi":"10.47836/pjst.32.1.01","DOIUrl":null,"url":null,"abstract":"This study determines the associations between the bacterial communities and water physicochemical parameters in Putrajaya Lake and Putrajaya Wetlands Park, Malaysia. Bacterial communities were assessed by metagenomics of the 16S rRNA gene from lake water input, central wetlands, and primary lake area. Water samples (n=18) were collected during two different periods: post-high rainfall events (samples collected in May) and dry periods (July). The data revealed that bacterial communities of the three sites were taxonomically distinct and associated with different environmental parameters. However, no significant differences were found between the wet and dry periods. Alpha diversity analyses revealed the highest index in May 2018 in the constructed wetlands (H’= 5.397) than those from water input or primary lake (p<0.05). Overall, 49 phyla, 147 classes, 284 orders, 471 families, 778 genera and 62 species of bacteria were identified. Verrumicrobia and Firmicutes showed a strong positive correlation with ammonia-nitrogen (r = 0.709). Actinobacteria and Cyanobacteria had a moderate positive correlation with nitrate with r value (r = 0.673) and (r = 0.647), respectively. In this study, the metagenomics of the 16S rRNA gene amplicon by Illumina MiSeq has successfully identified the bacterial community assemblage in Putrajaya Lake and wetlands. Bacterial composition was associated with the availability of physicochemical properties of specific sites. The effectiveness of the engineered wetlands of Putrajaya in bioremediation was demonstrated by the marked decrease in certain nutrient concentrations from lake water input to the primary lake area.","PeriodicalId":46234,"journal":{"name":"Pertanika Journal of Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physicochemical Impacts on Bacterial Communities in Putrajaya Lake, Malaysia\",\"authors\":\"Nurul Najwa Farihah Mat Lazim, Afiqah Mohamed, Zana Ruhaizat Zana Rudin, Fatimah Md Yusoff, Ikhsan Natrah, Shahrizim Zulkifly\",\"doi\":\"10.47836/pjst.32.1.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study determines the associations between the bacterial communities and water physicochemical parameters in Putrajaya Lake and Putrajaya Wetlands Park, Malaysia. Bacterial communities were assessed by metagenomics of the 16S rRNA gene from lake water input, central wetlands, and primary lake area. Water samples (n=18) were collected during two different periods: post-high rainfall events (samples collected in May) and dry periods (July). The data revealed that bacterial communities of the three sites were taxonomically distinct and associated with different environmental parameters. However, no significant differences were found between the wet and dry periods. Alpha diversity analyses revealed the highest index in May 2018 in the constructed wetlands (H’= 5.397) than those from water input or primary lake (p<0.05). Overall, 49 phyla, 147 classes, 284 orders, 471 families, 778 genera and 62 species of bacteria were identified. Verrumicrobia and Firmicutes showed a strong positive correlation with ammonia-nitrogen (r = 0.709). Actinobacteria and Cyanobacteria had a moderate positive correlation with nitrate with r value (r = 0.673) and (r = 0.647), respectively. In this study, the metagenomics of the 16S rRNA gene amplicon by Illumina MiSeq has successfully identified the bacterial community assemblage in Putrajaya Lake and wetlands. Bacterial composition was associated with the availability of physicochemical properties of specific sites. The effectiveness of the engineered wetlands of Putrajaya in bioremediation was demonstrated by the marked decrease in certain nutrient concentrations from lake water input to the primary lake area.\",\"PeriodicalId\":46234,\"journal\":{\"name\":\"Pertanika Journal of Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pertanika Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47836/pjst.32.1.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pertanika Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/pjst.32.1.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究确定了马来西亚普特拉贾亚湖和普特拉贾亚湿地公园的细菌群落与水理化参数之间的关系。采用16S rRNA基因宏基因组学方法,对湖泊水源、中心湿地和主要湖区的细菌群落进行了评估。在两个不同时期采集水样(n=18):高降雨事件后(5月采集)和干旱期(7月)。结果表明,这三个地点的细菌群落在分类上是不同的,并且与不同的环境参数有关。然而,在干湿期之间没有发现显著差异。α多样性分析显示,人工湿地在2018年5月的指数最高(H′= 5.397),高于输水湿地和原生湖泊(p < 0.05)。共鉴定出细菌49门147纲284目471科778属62种。Verrumicrobia和Firmicutes与氨氮呈极显著正相关(r = 0.709)。放线菌和蓝藻与硝酸盐呈中等正相关,r值分别为(0.673)和(0.647)。本研究利用Illumina MiSeq对16S rRNA基因扩增子进行宏基因组分析,成功鉴定了普特拉贾亚湖和湿地的细菌群落组合。细菌组成与特定位点的物理化学性质的可用性有关。布特拉贾亚人工湿地在生物修复方面的有效性可以从输入到主要湖区的湖水中某些营养物质浓度的显著降低中得到证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physicochemical Impacts on Bacterial Communities in Putrajaya Lake, Malaysia
This study determines the associations between the bacterial communities and water physicochemical parameters in Putrajaya Lake and Putrajaya Wetlands Park, Malaysia. Bacterial communities were assessed by metagenomics of the 16S rRNA gene from lake water input, central wetlands, and primary lake area. Water samples (n=18) were collected during two different periods: post-high rainfall events (samples collected in May) and dry periods (July). The data revealed that bacterial communities of the three sites were taxonomically distinct and associated with different environmental parameters. However, no significant differences were found between the wet and dry periods. Alpha diversity analyses revealed the highest index in May 2018 in the constructed wetlands (H’= 5.397) than those from water input or primary lake (p<0.05). Overall, 49 phyla, 147 classes, 284 orders, 471 families, 778 genera and 62 species of bacteria were identified. Verrumicrobia and Firmicutes showed a strong positive correlation with ammonia-nitrogen (r = 0.709). Actinobacteria and Cyanobacteria had a moderate positive correlation with nitrate with r value (r = 0.673) and (r = 0.647), respectively. In this study, the metagenomics of the 16S rRNA gene amplicon by Illumina MiSeq has successfully identified the bacterial community assemblage in Putrajaya Lake and wetlands. Bacterial composition was associated with the availability of physicochemical properties of specific sites. The effectiveness of the engineered wetlands of Putrajaya in bioremediation was demonstrated by the marked decrease in certain nutrient concentrations from lake water input to the primary lake area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pertanika Journal of Science and Technology
Pertanika Journal of Science and Technology MULTIDISCIPLINARY SCIENCES-
CiteScore
1.50
自引率
16.70%
发文量
178
期刊介绍: Pertanika Journal of Science and Technology aims to provide a forum for high quality research related to science and engineering research. Areas relevant to the scope of the journal include: bioinformatics, bioscience, biotechnology and bio-molecular sciences, chemistry, computer science, ecology, engineering, engineering design, environmental control and management, mathematics and statistics, medicine and health sciences, nanotechnology, physics, safety and emergency management, and related fields of study.
期刊最新文献
A Review on the Development of Microcarriers for Cell Culture Applications The Compatibility of Cement Bonded Fibreboard Through Dimensional Stability Analysis: A Review Bending Effects on Polyvinyl Alcohol Thin Film for Flexible Wearable Antenna Substrate Mesh Optimisation for General 3D Printed Objects with Cusp-Height Triangulation Approach The Riblet Short-Slot Coupler Using Substrate Integrated Waveguide (SIW) for High-frequency Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1