再生膨润土废渣在固定床深柱上吸附重金属的模拟研究

Mukhtar DH. Abbas, Daryoush Yousefi Kebria
{"title":"再生膨润土废渣在固定床深柱上吸附重金属的模拟研究","authors":"Mukhtar DH. Abbas, Daryoush Yousefi Kebria","doi":"10.18502/jehsd.v8i3.13706","DOIUrl":null,"url":null,"abstract":"Introduction: The study objective is to remove heavy metals from an aqueous solution using recycled bentonite clay waste (RBCW) as a low-cost and green adsorbent in a continuous system. The produced RBCW results from thermal remediating of the hazardous industrial bentonite clay waste that is a by-product of used engine oil recycling plants.
 Materials and Methods: The doses of the RBCW adsorbent were (1.0, 1.5, and 2.0) g mixed with (30, 40, and 50) g of the crystalline sand to produce bed depth columns of (22, 30, and 38 cm), respectively. The influent concentrations of all adsorbates were (20, 50, and 100) ppm, and the flow rates of the continuous system were (0.5, 1.0, and 2.0) mL/min.
 Results: The BET, XRF, and SEM tests and the experimental data approved that RBCW is active material for heavy metals adsorption. The adsorption capacity and breakthrough time of Pb, Cd, Cr, Zn, and Ni for dominant parameters (flow rate of 1.0 mL/min, adsorbent mass of 1.0 g, and influent concentration of heavy metals of 20 ppm) were 70.36, 36.05, 27.55, 21.67, and 18.63 mg/g, and 35, 19.73, 11.38, 6.25, and 8.13 hr, respectively.
 Conclusion: The RBCW adsorbent has more than one advantage in industrial and environmental issues. The (R2) values for Thomas, Yoon-Nelson, and BDST models were higher than 0.9. Moreover, the breakthrough curves of experimental data were more fitted with the Yoon-Nelson model due to the high value of R2 and low values of Chi-square, absolute average deviation, and standard deviation.","PeriodicalId":53380,"journal":{"name":"Journal of Environmental Health and Sustainable Development","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of Heavy Metals Adsorption Using Recycled Bentonite Clay Waste in a Fixed Bed Depth Column\",\"authors\":\"Mukhtar DH. Abbas, Daryoush Yousefi Kebria\",\"doi\":\"10.18502/jehsd.v8i3.13706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: The study objective is to remove heavy metals from an aqueous solution using recycled bentonite clay waste (RBCW) as a low-cost and green adsorbent in a continuous system. The produced RBCW results from thermal remediating of the hazardous industrial bentonite clay waste that is a by-product of used engine oil recycling plants.
 Materials and Methods: The doses of the RBCW adsorbent were (1.0, 1.5, and 2.0) g mixed with (30, 40, and 50) g of the crystalline sand to produce bed depth columns of (22, 30, and 38 cm), respectively. The influent concentrations of all adsorbates were (20, 50, and 100) ppm, and the flow rates of the continuous system were (0.5, 1.0, and 2.0) mL/min.
 Results: The BET, XRF, and SEM tests and the experimental data approved that RBCW is active material for heavy metals adsorption. The adsorption capacity and breakthrough time of Pb, Cd, Cr, Zn, and Ni for dominant parameters (flow rate of 1.0 mL/min, adsorbent mass of 1.0 g, and influent concentration of heavy metals of 20 ppm) were 70.36, 36.05, 27.55, 21.67, and 18.63 mg/g, and 35, 19.73, 11.38, 6.25, and 8.13 hr, respectively.
 Conclusion: The RBCW adsorbent has more than one advantage in industrial and environmental issues. The (R2) values for Thomas, Yoon-Nelson, and BDST models were higher than 0.9. Moreover, the breakthrough curves of experimental data were more fitted with the Yoon-Nelson model due to the high value of R2 and low values of Chi-square, absolute average deviation, and standard deviation.\",\"PeriodicalId\":53380,\"journal\":{\"name\":\"Journal of Environmental Health and Sustainable Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Health and Sustainable Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18502/jehsd.v8i3.13706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Health and Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/jehsd.v8i3.13706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

简介:本研究的目的是在连续系统中使用再生膨润土粘土废物(RBCW)作为低成本和绿色吸附剂,从水溶液中去除重金属。所产生的RBCW是对废机油回收厂副产的有害工业膨润土废渣进行热修复的结果。材料和方法:RBCW吸附剂的剂量分别为(1.0、1.5和2.0)g与(30、40和50)g结晶砂混合,形成(22、30和38 cm)的床深柱。所有吸附剂的进水浓度分别为(20、50和100)ppm,连续系统的流速分别为(0.5、1.0和2.0)mL/min。 结果:BET、XRF、SEM测试及实验数据均证实了RBCW是吸附重金属的活性材料。优势参数(流速为1.0 mL/min、吸附剂质量为1.0 g、进水重金属浓度为20 ppm)对Pb、Cd、Cr、Zn、Ni的吸附量和突破时间分别为70.36、36.05、27.55、21.67和18.63 mg/g,以及35、19.73、11.38、6.25和8.13 hr。 结论:RBCW吸附剂在工业和环境问题上具有多种优势。Thomas、Yoon-Nelson和BDST模型的(R2)值均大于0.9。此外,由于R2值较高,卡方、绝对平均偏差和标准差值较低,实验数据的突破曲线更符合Yoon-Nelson模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation of Heavy Metals Adsorption Using Recycled Bentonite Clay Waste in a Fixed Bed Depth Column
Introduction: The study objective is to remove heavy metals from an aqueous solution using recycled bentonite clay waste (RBCW) as a low-cost and green adsorbent in a continuous system. The produced RBCW results from thermal remediating of the hazardous industrial bentonite clay waste that is a by-product of used engine oil recycling plants. Materials and Methods: The doses of the RBCW adsorbent were (1.0, 1.5, and 2.0) g mixed with (30, 40, and 50) g of the crystalline sand to produce bed depth columns of (22, 30, and 38 cm), respectively. The influent concentrations of all adsorbates were (20, 50, and 100) ppm, and the flow rates of the continuous system were (0.5, 1.0, and 2.0) mL/min. Results: The BET, XRF, and SEM tests and the experimental data approved that RBCW is active material for heavy metals adsorption. The adsorption capacity and breakthrough time of Pb, Cd, Cr, Zn, and Ni for dominant parameters (flow rate of 1.0 mL/min, adsorbent mass of 1.0 g, and influent concentration of heavy metals of 20 ppm) were 70.36, 36.05, 27.55, 21.67, and 18.63 mg/g, and 35, 19.73, 11.38, 6.25, and 8.13 hr, respectively. Conclusion: The RBCW adsorbent has more than one advantage in industrial and environmental issues. The (R2) values for Thomas, Yoon-Nelson, and BDST models were higher than 0.9. Moreover, the breakthrough curves of experimental data were more fitted with the Yoon-Nelson model due to the high value of R2 and low values of Chi-square, absolute average deviation, and standard deviation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental Health and Sustainable Development
Journal of Environmental Health and Sustainable Development Engineering-Engineering (miscellaneous)
CiteScore
1.10
自引率
0.00%
发文量
24
审稿时长
9 weeks
期刊最新文献
Evaluation of Oxidative Stress Induced by Occupational Inhalation Exposure to N2O, an Anesthetic Gas Assessing the Rate of Recyclable Plastic Wastes and Recycling Economic Value in Hospitals of Yazd in 2022 Application of Rodenticides for the Control of Zoonotic Cutaneous Leishmaniasis in Iran: A Systematic Review of the Literature Determining Effective Factors Regarding Weather and Some Types of Air Pollutants in Seasonal Changes of PM10 Concentration Using Tree-Based Algorithms in Yazd City Investigating the Effects of Music and Temperature Changes on Heart Function and Human Error
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1