{"title":"低碳无空闲排列流车间调度问题:巨型三角优化器与非洲秃鹫优化算法","authors":"Dana Marsetiya Utama, Cantika Febrita","doi":"10.11591/ijaas.v12.i3.pp195-204","DOIUrl":null,"url":null,"abstract":"Greenhouse gas emissions continue to increase due to increased energy consumption. One of the largest emission-contributing sectors is the manufacturing industry. Therefore, the manufacturing industry is required to minimize carbon emissions. One of the efforts to solve the emission problem is to minimize machine downtime throughout the production procedure, which stands for no-idle permutation flowshop scheduling (NIPFSP). This article uses two metaheuristic algorithms, giant trevally optimizer (GTO) and African vultures optimization algorithm (AVOA), to solve the carbon emission problem. Both algorithms are tested on 3 cases with 30 runs for every population and iteration. To compare the outcomes of each algorithm, an independent sample t-test was employed. The results show that the GTO algorithm has better results than the AVOA algorithm on small and large case data. The findings indicate that both the GTO and AVOA algorithms yield comparable results when applied to medium-sized research datasets, suggesting their effectiveness in such scenarios.","PeriodicalId":44367,"journal":{"name":"International Journal of Advances in Engineering Sciences and Applied Mathematics","volume":"5 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-carbon no-idle permutation flow shop schedulling problem: giant trevally optimizer vs African vultures optimization algorithm\",\"authors\":\"Dana Marsetiya Utama, Cantika Febrita\",\"doi\":\"10.11591/ijaas.v12.i3.pp195-204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Greenhouse gas emissions continue to increase due to increased energy consumption. One of the largest emission-contributing sectors is the manufacturing industry. Therefore, the manufacturing industry is required to minimize carbon emissions. One of the efforts to solve the emission problem is to minimize machine downtime throughout the production procedure, which stands for no-idle permutation flowshop scheduling (NIPFSP). This article uses two metaheuristic algorithms, giant trevally optimizer (GTO) and African vultures optimization algorithm (AVOA), to solve the carbon emission problem. Both algorithms are tested on 3 cases with 30 runs for every population and iteration. To compare the outcomes of each algorithm, an independent sample t-test was employed. The results show that the GTO algorithm has better results than the AVOA algorithm on small and large case data. The findings indicate that both the GTO and AVOA algorithms yield comparable results when applied to medium-sized research datasets, suggesting their effectiveness in such scenarios.\",\"PeriodicalId\":44367,\"journal\":{\"name\":\"International Journal of Advances in Engineering Sciences and Applied Mathematics\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Engineering Sciences and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijaas.v12.i3.pp195-204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Engineering Sciences and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijaas.v12.i3.pp195-204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Greenhouse gas emissions continue to increase due to increased energy consumption. One of the largest emission-contributing sectors is the manufacturing industry. Therefore, the manufacturing industry is required to minimize carbon emissions. One of the efforts to solve the emission problem is to minimize machine downtime throughout the production procedure, which stands for no-idle permutation flowshop scheduling (NIPFSP). This article uses two metaheuristic algorithms, giant trevally optimizer (GTO) and African vultures optimization algorithm (AVOA), to solve the carbon emission problem. Both algorithms are tested on 3 cases with 30 runs for every population and iteration. To compare the outcomes of each algorithm, an independent sample t-test was employed. The results show that the GTO algorithm has better results than the AVOA algorithm on small and large case data. The findings indicate that both the GTO and AVOA algorithms yield comparable results when applied to medium-sized research datasets, suggesting their effectiveness in such scenarios.
期刊介绍:
International Journal of Advances in Engineering Sciences and Applied Mathematics will be a thematic journal, where each issue will be dedicated to a specific area of engineering and applied mathematics. The journal will accept original articles and will also publish review article that summarize the state of the art and provide a perspective on areas of current research interest.Articles that contain purely theoretical results are discouraged.