Yu Li, Yuebing Wang, Lijiang Zhao, Hongbo Shi, Pingping Wang
{"title":"高频GNSS揭示的2021年青海玛多7.4级地震动力学变形特征及烈度评价","authors":"Yu Li, Yuebing Wang, Lijiang Zhao, Hongbo Shi, Pingping Wang","doi":"10.1016/j.geog.2023.08.002","DOIUrl":null,"url":null,"abstract":"Rapid acquisition of the kinetics deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue, disaster assessment, and future seismic risk research. The advancement of GNSS observation and data processing makes it play an important role in this field, especially the high-frequency GNSS. We used the differential positioning method to calculate the 1 HZ GNSS data from 98 sites within 1000 km of the MS7.4 Maduo earthquake epicenter. The kinetics deformation field and the distribution of the seismic intensity by using the peak ground velocity derived from displacement waveforms were obtained. The results show that: 1) Horizontal coseismic response deformation levels ranging from 25 mm to 301 mm can be observed within a 1000 km radius from the epicenter. Coseismic response deformation on the east and west sides shows bilateral asymmetry, which markedly differs from the symmetry presented by surface rupture. 2) The seismic intensity obtained through high-frequency GNSS and field investigations exhibits good consistency of the scope and orientation in the high seismic intensity area, although the former is generally slightly smaller than the latter. 3) There may exist obstacles on the eastern side of the seismogenic fault. The Maduo earthquake induced a certain tectonic stress loading effect on the western Kunlun Pass-Jiangcuo fault (KPJF) and Maqin-Maqu segment, resulting in higher seismic risk in the future.","PeriodicalId":46398,"journal":{"name":"Geodesy and Geodynamics","volume":"28 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetics deformation characteristics and intensity assessment of the 2021 Maduo M7.4 earthquake in Qinghai revealed by high-frequency GNSS\",\"authors\":\"Yu Li, Yuebing Wang, Lijiang Zhao, Hongbo Shi, Pingping Wang\",\"doi\":\"10.1016/j.geog.2023.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid acquisition of the kinetics deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue, disaster assessment, and future seismic risk research. The advancement of GNSS observation and data processing makes it play an important role in this field, especially the high-frequency GNSS. We used the differential positioning method to calculate the 1 HZ GNSS data from 98 sites within 1000 km of the MS7.4 Maduo earthquake epicenter. The kinetics deformation field and the distribution of the seismic intensity by using the peak ground velocity derived from displacement waveforms were obtained. The results show that: 1) Horizontal coseismic response deformation levels ranging from 25 mm to 301 mm can be observed within a 1000 km radius from the epicenter. Coseismic response deformation on the east and west sides shows bilateral asymmetry, which markedly differs from the symmetry presented by surface rupture. 2) The seismic intensity obtained through high-frequency GNSS and field investigations exhibits good consistency of the scope and orientation in the high seismic intensity area, although the former is generally slightly smaller than the latter. 3) There may exist obstacles on the eastern side of the seismogenic fault. The Maduo earthquake induced a certain tectonic stress loading effect on the western Kunlun Pass-Jiangcuo fault (KPJF) and Maqin-Maqu segment, resulting in higher seismic risk in the future.\",\"PeriodicalId\":46398,\"journal\":{\"name\":\"Geodesy and Geodynamics\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geodesy and Geodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.geog.2023.08.002\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodesy and Geodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.geog.2023.08.002","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Kinetics deformation characteristics and intensity assessment of the 2021 Maduo M7.4 earthquake in Qinghai revealed by high-frequency GNSS
Rapid acquisition of the kinetics deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue, disaster assessment, and future seismic risk research. The advancement of GNSS observation and data processing makes it play an important role in this field, especially the high-frequency GNSS. We used the differential positioning method to calculate the 1 HZ GNSS data from 98 sites within 1000 km of the MS7.4 Maduo earthquake epicenter. The kinetics deformation field and the distribution of the seismic intensity by using the peak ground velocity derived from displacement waveforms were obtained. The results show that: 1) Horizontal coseismic response deformation levels ranging from 25 mm to 301 mm can be observed within a 1000 km radius from the epicenter. Coseismic response deformation on the east and west sides shows bilateral asymmetry, which markedly differs from the symmetry presented by surface rupture. 2) The seismic intensity obtained through high-frequency GNSS and field investigations exhibits good consistency of the scope and orientation in the high seismic intensity area, although the former is generally slightly smaller than the latter. 3) There may exist obstacles on the eastern side of the seismogenic fault. The Maduo earthquake induced a certain tectonic stress loading effect on the western Kunlun Pass-Jiangcuo fault (KPJF) and Maqin-Maqu segment, resulting in higher seismic risk in the future.
期刊介绍:
Geodesy and Geodynamics launched in October, 2010, and is a bimonthly publication. It is sponsored jointly by Institute of Seismology, China Earthquake Administration, Science Press, and another six agencies. It is an international journal with a Chinese heart. Geodesy and Geodynamics is committed to the publication of quality scientific papers in English in the fields of geodesy and geodynamics from authors around the world. Its aim is to promote a combination between Geodesy and Geodynamics, deepen the application of Geodesy in the field of Geoscience and quicken worldwide fellows'' understanding on scientific research activity in China. It mainly publishes newest research achievements in the field of Geodesy, Geodynamics, Science of Disaster and so on. Aims and Scope: new theories and methods of geodesy; new results of monitoring and studying crustal movement and deformation by using geodetic theories and methods; new ways and achievements in earthquake-prediction investigation by using geodetic theories and methods; new results of crustal movement and deformation studies by using other geologic, hydrological, and geophysical theories and methods; new results of satellite gravity measurements; new development and results of space-to-ground observation technology.