Qie Xiwang, Ji Jiadong, Li Feiyang, Deng Xu, Zhou Jianxin
{"title":"弯曲折流板弹性管换热的振动与传热研究","authors":"Qie Xiwang, Ji Jiadong, Li Feiyang, Deng Xu, Zhou Jianxin","doi":"10.2514/1.t6816","DOIUrl":null,"url":null,"abstract":"A heat exchanger with a curved baffle for an elastic-tube bundle (ETB) is designed to effectively improve the performance based on a common ETB heat exchanger, and this paper systematically studies its vibration and heat transfer characteristics under different inlet velocity and structural parameters. The results indicate that the ETB vibration characteristics increase significantly with an increasing velocity, and the average amplitude of the ETB at [Formula: see text] is 4.51 times higher than that at [Formula: see text]. Similarly, the heat transfer performance subsequently decreases, but the average heat transfer coefficient of the ETB is significantly increased with the increase of the inlet velocity. When the long axis increases from 45 to 75 mm, the vibration intensity of the ETB decreases sharply, and the [Formula: see text] direction and the total vibration [Formula: see text] decrease by 43.4 and 51.5%, respectively. At the same time, the heat transfer coefficient of the ETB and its growth rate decrease by 3.9 and 45.6%. Additionally, the baffle curvature has little impact on the vibration and heat transfer performance. The difference between the average heat transfer coefficient and the total vibration amplitude of the ETB for different baffle curvatures is less than 5%.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibration and Heat Transfer Study on Elastic-Tube Heat Exchange with Curved Baffle\",\"authors\":\"Qie Xiwang, Ji Jiadong, Li Feiyang, Deng Xu, Zhou Jianxin\",\"doi\":\"10.2514/1.t6816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A heat exchanger with a curved baffle for an elastic-tube bundle (ETB) is designed to effectively improve the performance based on a common ETB heat exchanger, and this paper systematically studies its vibration and heat transfer characteristics under different inlet velocity and structural parameters. The results indicate that the ETB vibration characteristics increase significantly with an increasing velocity, and the average amplitude of the ETB at [Formula: see text] is 4.51 times higher than that at [Formula: see text]. Similarly, the heat transfer performance subsequently decreases, but the average heat transfer coefficient of the ETB is significantly increased with the increase of the inlet velocity. When the long axis increases from 45 to 75 mm, the vibration intensity of the ETB decreases sharply, and the [Formula: see text] direction and the total vibration [Formula: see text] decrease by 43.4 and 51.5%, respectively. At the same time, the heat transfer coefficient of the ETB and its growth rate decrease by 3.9 and 45.6%. Additionally, the baffle curvature has little impact on the vibration and heat transfer performance. The difference between the average heat transfer coefficient and the total vibration amplitude of the ETB for different baffle curvatures is less than 5%.\",\"PeriodicalId\":17482,\"journal\":{\"name\":\"Journal of Thermophysics and Heat Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermophysics and Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/1.t6816\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.t6816","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Vibration and Heat Transfer Study on Elastic-Tube Heat Exchange with Curved Baffle
A heat exchanger with a curved baffle for an elastic-tube bundle (ETB) is designed to effectively improve the performance based on a common ETB heat exchanger, and this paper systematically studies its vibration and heat transfer characteristics under different inlet velocity and structural parameters. The results indicate that the ETB vibration characteristics increase significantly with an increasing velocity, and the average amplitude of the ETB at [Formula: see text] is 4.51 times higher than that at [Formula: see text]. Similarly, the heat transfer performance subsequently decreases, but the average heat transfer coefficient of the ETB is significantly increased with the increase of the inlet velocity. When the long axis increases from 45 to 75 mm, the vibration intensity of the ETB decreases sharply, and the [Formula: see text] direction and the total vibration [Formula: see text] decrease by 43.4 and 51.5%, respectively. At the same time, the heat transfer coefficient of the ETB and its growth rate decrease by 3.9 and 45.6%. Additionally, the baffle curvature has little impact on the vibration and heat transfer performance. The difference between the average heat transfer coefficient and the total vibration amplitude of the ETB for different baffle curvatures is less than 5%.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.