藻类多糖基纳米材料:一般方面及其在食品和生物医学领域的潜在应用

Juliana Botelho Moreira, Thaisa Duarte Santos, Camila Gonzales Cruz, Jéssica Teixeira da Silveira, Lisiane Fernandes de Carvalho, Michele Greque de Morais, Jorge Alberto Vieira Costa
{"title":"藻类多糖基纳米材料:一般方面及其在食品和生物医学领域的潜在应用","authors":"Juliana Botelho Moreira, Thaisa Duarte Santos, Camila Gonzales Cruz, Jéssica Teixeira da Silveira, Lisiane Fernandes de Carvalho, Michele Greque de Morais, Jorge Alberto Vieira Costa","doi":"10.3390/polysaccharides4040022","DOIUrl":null,"url":null,"abstract":"The use of natural polymers has increased due to concern about environmental pollution caused by plastics and emerging pollutants from fossil fuels. In this context, polysaccharides from macroalgae and microalgae arise as natural and abundant resources for various biological, biomedical, and food applications. Different nanomaterials are produced from these polysaccharides to act as effective carriers in the food and pharmaceutical industry: drug and nutrient carriers, active compound encapsulation, and delivery of therapeutic agents to tumor tissues. Polysaccharides-based nanomaterials applied as functional ingredients incorporated into foods can improve texture properties and decrease the caloric density of food products. These nanostructures also present the potential for developing food packaging with antioxidant and antimicrobial properties. In addition, polysaccharides-based nanomaterials are biocompatible, biodegradable, and safe for medical practices to prevent and manage various chronic diseases, such as diabetes, obesity, and cardiovascular disease. In this sense, this review article addresses the use of algal polysaccharides for manufacturing nanomaterials and their potential applications in food and biomedical areas. In addition, the paper discusses the general aspects of algae as a source of polysaccharides, the nanomaterials produced from these polymers, as well as recent studies and the potential use of algal polysaccharides for industries.","PeriodicalId":18775,"journal":{"name":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algal Polysaccharides-Based Nanomaterials: General Aspects and Potential Applications in Food and Biomedical Fields\",\"authors\":\"Juliana Botelho Moreira, Thaisa Duarte Santos, Camila Gonzales Cruz, Jéssica Teixeira da Silveira, Lisiane Fernandes de Carvalho, Michele Greque de Morais, Jorge Alberto Vieira Costa\",\"doi\":\"10.3390/polysaccharides4040022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of natural polymers has increased due to concern about environmental pollution caused by plastics and emerging pollutants from fossil fuels. In this context, polysaccharides from macroalgae and microalgae arise as natural and abundant resources for various biological, biomedical, and food applications. Different nanomaterials are produced from these polysaccharides to act as effective carriers in the food and pharmaceutical industry: drug and nutrient carriers, active compound encapsulation, and delivery of therapeutic agents to tumor tissues. Polysaccharides-based nanomaterials applied as functional ingredients incorporated into foods can improve texture properties and decrease the caloric density of food products. These nanostructures also present the potential for developing food packaging with antioxidant and antimicrobial properties. In addition, polysaccharides-based nanomaterials are biocompatible, biodegradable, and safe for medical practices to prevent and manage various chronic diseases, such as diabetes, obesity, and cardiovascular disease. In this sense, this review article addresses the use of algal polysaccharides for manufacturing nanomaterials and their potential applications in food and biomedical areas. In addition, the paper discusses the general aspects of algae as a source of polysaccharides, the nanomaterials produced from these polymers, as well as recent studies and the potential use of algal polysaccharides for industries.\",\"PeriodicalId\":18775,\"journal\":{\"name\":\"Natural Polysaccharides in Drug Delivery and Biomedical Applications\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Polysaccharides in Drug Delivery and Biomedical Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/polysaccharides4040022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/polysaccharides4040022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于担心塑料造成的环境污染和化石燃料产生的新污染物,天然聚合物的使用有所增加。在这种背景下,巨藻和微藻中的多糖作为一种天然而丰富的资源,在生物、生物医学和食品领域有着广泛的应用。从这些多糖中产生不同的纳米材料,在食品和制药工业中充当有效的载体:药物和营养载体,活性化合物包封,以及向肿瘤组织递送治疗剂。以多糖为基础的纳米材料作为功能性成分掺入食品中,可以改善食品的质地,降低食品的热量密度。这些纳米结构也为开发具有抗氧化和抗菌性能的食品包装提供了潜力。此外,多糖基纳米材料具有生物相容性、可生物降解性和安全性,可用于医疗实践,以预防和管理各种慢性疾病,如糖尿病、肥胖和心血管疾病。从这个意义上讲,本文综述了藻类多糖在制造纳米材料中的应用及其在食品和生物医学领域的潜在应用。此外,本文还讨论了藻类作为多糖来源的一般情况,由这些聚合物生产的纳米材料,以及最近的研究和藻类多糖在工业上的潜在用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Algal Polysaccharides-Based Nanomaterials: General Aspects and Potential Applications in Food and Biomedical Fields
The use of natural polymers has increased due to concern about environmental pollution caused by plastics and emerging pollutants from fossil fuels. In this context, polysaccharides from macroalgae and microalgae arise as natural and abundant resources for various biological, biomedical, and food applications. Different nanomaterials are produced from these polysaccharides to act as effective carriers in the food and pharmaceutical industry: drug and nutrient carriers, active compound encapsulation, and delivery of therapeutic agents to tumor tissues. Polysaccharides-based nanomaterials applied as functional ingredients incorporated into foods can improve texture properties and decrease the caloric density of food products. These nanostructures also present the potential for developing food packaging with antioxidant and antimicrobial properties. In addition, polysaccharides-based nanomaterials are biocompatible, biodegradable, and safe for medical practices to prevent and manage various chronic diseases, such as diabetes, obesity, and cardiovascular disease. In this sense, this review article addresses the use of algal polysaccharides for manufacturing nanomaterials and their potential applications in food and biomedical areas. In addition, the paper discusses the general aspects of algae as a source of polysaccharides, the nanomaterials produced from these polymers, as well as recent studies and the potential use of algal polysaccharides for industries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient (Bio)emulsification/Degradation of Crude Oil Using Cellulose Nanocrystals Advancing Paper Industry Applications with Extruded Cationic Wheat Starch as an Environmentally Friendly Biopolymer Algal Polysaccharides-Based Nanomaterials: General Aspects and Potential Applications in Food and Biomedical Fields Enzymatic Treatment of Ferulated Arabinoxylans from Distillers Dried Grains with Solubles: Influence on the Fabrication of Covalent Electro-Sprayed Nanoparticles In Vitro Biological Properties of Cyclodextrin-Based Polymers: Interaction with Human Serum Albumin, Red Blood Cells and Bacteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1