{"title":"互易性在波场可视化和缺陷检测中的应用","authors":"Bernd Köhler, Kanta Takahashi, Kazuyuki Nakahata","doi":"10.1080/09349847.2023.2261878","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe motion visualization in a structural component was studied for defect detection. Elastic motions were excited by hammer impacts at multiple points and received by an accelerometer at a fixed point. Reciprocity in elastodynamics is only valid under certain conditions. Its validity under given experimental conditions was derived from the elastodynamic reciprocity theorem. Based on this, the dynamic motion of the structural component was obtained for fixed-point excitation from measurements performed using multipoint excitations. In the visualized eigenmodes, significant additional deformation was observed at the wall thinning inserted as an artificial defect. To prevent the dependence of defect detection on its position within the mode shape, another approach was proposed based on the extraction of guided wave modes immediately after impact excitation. It is shown that this maximum intensity projection method works well in detecting defects.KEYWORDS: Elastodynamic reciprocityvisualization of damagemultisite excitationselective guided wave mode AcknowledgmentsWe gratefully acknowledge the funding support by JSPS.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the Japan Society for the Promotion of Science [15K01226] and the Invitational Fellowships for Research in Japan [S20084].","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"25 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Reciprocity for Facilitation of Wave Field Visualization and Defect Detection\",\"authors\":\"Bernd Köhler, Kanta Takahashi, Kazuyuki Nakahata\",\"doi\":\"10.1080/09349847.2023.2261878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTThe motion visualization in a structural component was studied for defect detection. Elastic motions were excited by hammer impacts at multiple points and received by an accelerometer at a fixed point. Reciprocity in elastodynamics is only valid under certain conditions. Its validity under given experimental conditions was derived from the elastodynamic reciprocity theorem. Based on this, the dynamic motion of the structural component was obtained for fixed-point excitation from measurements performed using multipoint excitations. In the visualized eigenmodes, significant additional deformation was observed at the wall thinning inserted as an artificial defect. To prevent the dependence of defect detection on its position within the mode shape, another approach was proposed based on the extraction of guided wave modes immediately after impact excitation. It is shown that this maximum intensity projection method works well in detecting defects.KEYWORDS: Elastodynamic reciprocityvisualization of damagemultisite excitationselective guided wave mode AcknowledgmentsWe gratefully acknowledge the funding support by JSPS.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the Japan Society for the Promotion of Science [15K01226] and the Invitational Fellowships for Research in Japan [S20084].\",\"PeriodicalId\":54493,\"journal\":{\"name\":\"Research in Nondestructive Evaluation\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Nondestructive Evaluation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09349847.2023.2261878\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09349847.2023.2261878","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Application of Reciprocity for Facilitation of Wave Field Visualization and Defect Detection
ABSTRACTThe motion visualization in a structural component was studied for defect detection. Elastic motions were excited by hammer impacts at multiple points and received by an accelerometer at a fixed point. Reciprocity in elastodynamics is only valid under certain conditions. Its validity under given experimental conditions was derived from the elastodynamic reciprocity theorem. Based on this, the dynamic motion of the structural component was obtained for fixed-point excitation from measurements performed using multipoint excitations. In the visualized eigenmodes, significant additional deformation was observed at the wall thinning inserted as an artificial defect. To prevent the dependence of defect detection on its position within the mode shape, another approach was proposed based on the extraction of guided wave modes immediately after impact excitation. It is shown that this maximum intensity projection method works well in detecting defects.KEYWORDS: Elastodynamic reciprocityvisualization of damagemultisite excitationselective guided wave mode AcknowledgmentsWe gratefully acknowledge the funding support by JSPS.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the Japan Society for the Promotion of Science [15K01226] and the Invitational Fellowships for Research in Japan [S20084].
期刊介绍:
Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement.
Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.