{"title":"离子推力器羽流真空室中碳反溅射的三维动力学模拟","authors":"Keita Nishii, Deborah A. Levin","doi":"10.2514/1.b39194","DOIUrl":null,"url":null,"abstract":"Gridded ion thrusters are tested in ground vacuum chambers to verify their performance when deployed in space. However, the presence of high background pressure and conductive walls in the chamber leads to facility effects that increase uncertainty in the performance of the thruster in space. To address this issue, this study utilizes a fully kinetic simulation to investigate the facility effects on the thruster plume. The in-chamber condition shows a downstream neutral particle density 100 times larger than the in-space case due to ion neutralization at the wall and limited vacuum pump capability, resulting in a significant difference in the density and distribution of charge-exchange ions. The flux, energy, and angle of charge-exchange ions incident on the chamber wall are found to be altered by the electron sheath, which can only be simulated by the fully kinetic approach, as opposed to the conventionally used quasi-neutral Boltzmann approach. We also examine the effect of backsputtering, another important facility effect, and find that it does not necessarily require a fully kinetic simulation as the incident flux and energy of the sampled charge-exchange ion are negligibly small. Finally, we demonstrate that the carbon deposition rate on the thruster is significantly influenced by the angular dependence of the sputtered carbon, with a nearly 50% effect.","PeriodicalId":16903,"journal":{"name":"Journal of Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Three-Dimensional Kinetic Simulations of Carbon Backsputtering in Vacuum Chambers from Ion Thruster Plumes\",\"authors\":\"Keita Nishii, Deborah A. Levin\",\"doi\":\"10.2514/1.b39194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gridded ion thrusters are tested in ground vacuum chambers to verify their performance when deployed in space. However, the presence of high background pressure and conductive walls in the chamber leads to facility effects that increase uncertainty in the performance of the thruster in space. To address this issue, this study utilizes a fully kinetic simulation to investigate the facility effects on the thruster plume. The in-chamber condition shows a downstream neutral particle density 100 times larger than the in-space case due to ion neutralization at the wall and limited vacuum pump capability, resulting in a significant difference in the density and distribution of charge-exchange ions. The flux, energy, and angle of charge-exchange ions incident on the chamber wall are found to be altered by the electron sheath, which can only be simulated by the fully kinetic approach, as opposed to the conventionally used quasi-neutral Boltzmann approach. We also examine the effect of backsputtering, another important facility effect, and find that it does not necessarily require a fully kinetic simulation as the incident flux and energy of the sampled charge-exchange ion are negligibly small. Finally, we demonstrate that the carbon deposition rate on the thruster is significantly influenced by the angular dependence of the sputtered carbon, with a nearly 50% effect.\",\"PeriodicalId\":16903,\"journal\":{\"name\":\"Journal of Propulsion and Power\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Propulsion and Power\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/1.b39194\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Propulsion and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.b39194","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Three-Dimensional Kinetic Simulations of Carbon Backsputtering in Vacuum Chambers from Ion Thruster Plumes
Gridded ion thrusters are tested in ground vacuum chambers to verify their performance when deployed in space. However, the presence of high background pressure and conductive walls in the chamber leads to facility effects that increase uncertainty in the performance of the thruster in space. To address this issue, this study utilizes a fully kinetic simulation to investigate the facility effects on the thruster plume. The in-chamber condition shows a downstream neutral particle density 100 times larger than the in-space case due to ion neutralization at the wall and limited vacuum pump capability, resulting in a significant difference in the density and distribution of charge-exchange ions. The flux, energy, and angle of charge-exchange ions incident on the chamber wall are found to be altered by the electron sheath, which can only be simulated by the fully kinetic approach, as opposed to the conventionally used quasi-neutral Boltzmann approach. We also examine the effect of backsputtering, another important facility effect, and find that it does not necessarily require a fully kinetic simulation as the incident flux and energy of the sampled charge-exchange ion are negligibly small. Finally, we demonstrate that the carbon deposition rate on the thruster is significantly influenced by the angular dependence of the sputtered carbon, with a nearly 50% effect.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of aerospace propulsion and power through the dissemination of original archival papers contributing to advancements in airbreathing, electric, and advanced propulsion; solid and liquid rockets; fuels and propellants; power generation and conversion for aerospace vehicles; and the application of aerospace science and technology to terrestrial energy devices and systems. It is intended to provide readers of the Journal, with primary interests in propulsion and power, access to papers spanning the range from research through development to applications. Papers in these disciplines and the sciences of combustion, fluid mechanics, and solid mechanics as directly related to propulsion and power are solicited.