{"title":"连接和自动车辆装载系统,用于改善人类驾驶车辆在滚装/滚装港口操作中的操作效率低下","authors":"Sang Hyung Park, Sihyun Kim","doi":"10.1080/03081060.2023.2265382","DOIUrl":null,"url":null,"abstract":"This study aims to identify the non-value-adding activities during vehicle stowage operations in automobile terminals and propose a connected automated vehicle (CAV) loading system, a self-driving-car-loading system. Furthermore, the productivity of the CAV loading system is compared with the current loading system. A simulation model of an actual loading system was developed using the software FlexSim. The simulation results showed that the walking time of workers, operation time of shuttle vans, and waiting time occupied a large part of the cycle time in the current operation system. The proposed CAV loading system has eliminated these inefficiencies, and increased productivity by 26.78%. This is the first study to (1) present a self-driving-car-loading system in a simulated automobile terminal of a real-world size, and (2) propose a CAV loading system. Results provide useful insights for the integration of self-driving technology into future automobile port operations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connected and automated vehicle loading system for improving operational inefficiency from human driven vehicle in roll-on/roll-off port operations\",\"authors\":\"Sang Hyung Park, Sihyun Kim\",\"doi\":\"10.1080/03081060.2023.2265382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to identify the non-value-adding activities during vehicle stowage operations in automobile terminals and propose a connected automated vehicle (CAV) loading system, a self-driving-car-loading system. Furthermore, the productivity of the CAV loading system is compared with the current loading system. A simulation model of an actual loading system was developed using the software FlexSim. The simulation results showed that the walking time of workers, operation time of shuttle vans, and waiting time occupied a large part of the cycle time in the current operation system. The proposed CAV loading system has eliminated these inefficiencies, and increased productivity by 26.78%. This is the first study to (1) present a self-driving-car-loading system in a simulated automobile terminal of a real-world size, and (2) propose a CAV loading system. Results provide useful insights for the integration of self-driving technology into future automobile port operations.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03081060.2023.2265382\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03081060.2023.2265382","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Connected and automated vehicle loading system for improving operational inefficiency from human driven vehicle in roll-on/roll-off port operations
This study aims to identify the non-value-adding activities during vehicle stowage operations in automobile terminals and propose a connected automated vehicle (CAV) loading system, a self-driving-car-loading system. Furthermore, the productivity of the CAV loading system is compared with the current loading system. A simulation model of an actual loading system was developed using the software FlexSim. The simulation results showed that the walking time of workers, operation time of shuttle vans, and waiting time occupied a large part of the cycle time in the current operation system. The proposed CAV loading system has eliminated these inefficiencies, and increased productivity by 26.78%. This is the first study to (1) present a self-driving-car-loading system in a simulated automobile terminal of a real-world size, and (2) propose a CAV loading system. Results provide useful insights for the integration of self-driving technology into future automobile port operations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.