{"title":"具有Smith生长函数的捕食者-猎物模型的全局动力学和猎物的加性捕食","authors":"Dingyong Bai, Jiale Zheng, Yun Kang","doi":"10.3934/dcdsb.2023161","DOIUrl":null,"url":null,"abstract":"We propose and study a predator-prey model with a Smith growth function and the addition predation term described by a Holling Type Ⅱ functional response in prey. This additive predation term can lead to Allee effects in prey population dynamics that can generate complicated dynamics in the corresponding predator-prey model. We provide a through analysis of the global dynamics of the proposed model, including the equilibrium stability, Hopf bifurcation and its directions, existence of a heteroclinic orbit loop and limit cycles. We show that when the predator-prey model exhibits Allee effects, Hopf bifurcation is either backward and supercritical or forward and subcritical. In the strong Allee effect case, the model has a heteroclinic orbit loop connecting two boundary saddle points. Our results show that the coexistence can be achieved by controlling the attack rate of other potential predators so that the model exhibits weak Allee effects or no Allee effect. Both the small additional predation rate and the large replacement rate of mass can improve the coexistence probability of two species. The main difference of dynamics between the model exhibiting weak Allee effect and no Allee effect lies in the pattern of coexistence: If no Allee effect, the coexistence can be a steady state while in the weak Allee case, the coexistence may be periodic.","PeriodicalId":51015,"journal":{"name":"Discrete and Continuous Dynamical Systems-Series B","volume":"63 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global dynamics of a predator-prey model with a Smith growth function and the additive predation in prey\",\"authors\":\"Dingyong Bai, Jiale Zheng, Yun Kang\",\"doi\":\"10.3934/dcdsb.2023161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose and study a predator-prey model with a Smith growth function and the addition predation term described by a Holling Type Ⅱ functional response in prey. This additive predation term can lead to Allee effects in prey population dynamics that can generate complicated dynamics in the corresponding predator-prey model. We provide a through analysis of the global dynamics of the proposed model, including the equilibrium stability, Hopf bifurcation and its directions, existence of a heteroclinic orbit loop and limit cycles. We show that when the predator-prey model exhibits Allee effects, Hopf bifurcation is either backward and supercritical or forward and subcritical. In the strong Allee effect case, the model has a heteroclinic orbit loop connecting two boundary saddle points. Our results show that the coexistence can be achieved by controlling the attack rate of other potential predators so that the model exhibits weak Allee effects or no Allee effect. Both the small additional predation rate and the large replacement rate of mass can improve the coexistence probability of two species. The main difference of dynamics between the model exhibiting weak Allee effect and no Allee effect lies in the pattern of coexistence: If no Allee effect, the coexistence can be a steady state while in the weak Allee case, the coexistence may be periodic.\",\"PeriodicalId\":51015,\"journal\":{\"name\":\"Discrete and Continuous Dynamical Systems-Series B\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Dynamical Systems-Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcdsb.2023161\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems-Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdsb.2023161","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Global dynamics of a predator-prey model with a Smith growth function and the additive predation in prey
We propose and study a predator-prey model with a Smith growth function and the addition predation term described by a Holling Type Ⅱ functional response in prey. This additive predation term can lead to Allee effects in prey population dynamics that can generate complicated dynamics in the corresponding predator-prey model. We provide a through analysis of the global dynamics of the proposed model, including the equilibrium stability, Hopf bifurcation and its directions, existence of a heteroclinic orbit loop and limit cycles. We show that when the predator-prey model exhibits Allee effects, Hopf bifurcation is either backward and supercritical or forward and subcritical. In the strong Allee effect case, the model has a heteroclinic orbit loop connecting two boundary saddle points. Our results show that the coexistence can be achieved by controlling the attack rate of other potential predators so that the model exhibits weak Allee effects or no Allee effect. Both the small additional predation rate and the large replacement rate of mass can improve the coexistence probability of two species. The main difference of dynamics between the model exhibiting weak Allee effect and no Allee effect lies in the pattern of coexistence: If no Allee effect, the coexistence can be a steady state while in the weak Allee case, the coexistence may be periodic.
期刊介绍:
Centered around dynamics, DCDS-B is an interdisciplinary journal focusing on the interactions between mathematical modeling, analysis and scientific computations. The mission of the Journal is to bridge mathematics and sciences by publishing research papers that augment the fundamental ways we interpret, model and predict scientific phenomena. The Journal covers a broad range of areas including chemical, engineering, physical and life sciences. A more detailed indication is given by the subject interests of the members of the Editorial Board.