{"title":"基于卷积神经网络的泵工作点估计传感器信号的系统比较","authors":"Hanbing Ma, Oliver Kirschner, Stefan Riedelbauch","doi":"10.3390/ijtpp8040039","DOIUrl":null,"url":null,"abstract":"The head and flow rate of a pump characterize the pump performance, which help determine whether maintenance is needed. In the proposed method, instead of a traditional flowmeter and manometer, the operating points are identified using data collected from accelerometers and microphones. The dataset is created from a test rig consisting of a standard centrifugal water pump and measurement system. After implementing preprocessing techniques and Convolutional Neural Networks (CNNs), the trained models are obtained and evaluated. The influence of the sensor location and the performance of different signals or signal combinations are investigated. The proposed method achieves a mean relative error of 7.23% for flow rate and 2.37% for head with the best model. By employing two data augmentation techniques, performance is further improved, resulting in a mean relative error of 3.55% for flow rate and 1.35% for head with the sliding window technique.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic Comparison of Sensor Signals for Pump Operating Points Estimation Using Convolutional Neural Network\",\"authors\":\"Hanbing Ma, Oliver Kirschner, Stefan Riedelbauch\",\"doi\":\"10.3390/ijtpp8040039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The head and flow rate of a pump characterize the pump performance, which help determine whether maintenance is needed. In the proposed method, instead of a traditional flowmeter and manometer, the operating points are identified using data collected from accelerometers and microphones. The dataset is created from a test rig consisting of a standard centrifugal water pump and measurement system. After implementing preprocessing techniques and Convolutional Neural Networks (CNNs), the trained models are obtained and evaluated. The influence of the sensor location and the performance of different signals or signal combinations are investigated. The proposed method achieves a mean relative error of 7.23% for flow rate and 2.37% for head with the best model. By employing two data augmentation techniques, performance is further improved, resulting in a mean relative error of 3.55% for flow rate and 1.35% for head with the sliding window technique.\",\"PeriodicalId\":36626,\"journal\":{\"name\":\"International Journal of Turbomachinery, Propulsion and Power\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Turbomachinery, Propulsion and Power\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ijtpp8040039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbomachinery, Propulsion and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ijtpp8040039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Systematic Comparison of Sensor Signals for Pump Operating Points Estimation Using Convolutional Neural Network
The head and flow rate of a pump characterize the pump performance, which help determine whether maintenance is needed. In the proposed method, instead of a traditional flowmeter and manometer, the operating points are identified using data collected from accelerometers and microphones. The dataset is created from a test rig consisting of a standard centrifugal water pump and measurement system. After implementing preprocessing techniques and Convolutional Neural Networks (CNNs), the trained models are obtained and evaluated. The influence of the sensor location and the performance of different signals or signal combinations are investigated. The proposed method achieves a mean relative error of 7.23% for flow rate and 2.37% for head with the best model. By employing two data augmentation techniques, performance is further improved, resulting in a mean relative error of 3.55% for flow rate and 1.35% for head with the sliding window technique.