{"title":"表征学术协作网络的几何深度学习策略","authors":"Daniele Pretolesi;Davide Garbarino;Daniele Giampaoli;Andrea Vian;Annalisa Barla","doi":"10.1109/TETC.2023.3315954","DOIUrl":null,"url":null,"abstract":"This paper examines how geometric deep learning techniques may be employed to analyze academic collaboration networks (ACNs) and how using textual information drawn from publications improves the overall performance of the system. The proposed experimental pipeline was used to analyze the collaboration network of the Machine Learning Genoa Center (MaLGa) research group. First, we find the optimal method for embedding the input data graph and extracting meaningful keywords for the available publications. We then use Graph Neural Networks (GNN) for node type and research topic classification. Finally, we explore how the resulting corpus can be used to create a recommender system for optimal navigation of the ACN. Our results show that the GNN-based recommender system achieved high accuracy in suggesting unexplored nodes to users. Overall, this study demonstrates the potential for using geometric deep learning and Natural Language Processing (NLP) to best represent the scientific production of ACNs. In the future, we plan to incorporate the temporal nature of the data and navigation statistics of users exploring the graph as additional input for the recommender system.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":"12 3","pages":"840-851"},"PeriodicalIF":5.1000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric Deep Learning Strategies for the Characterization of Academic Collaboration Networks\",\"authors\":\"Daniele Pretolesi;Davide Garbarino;Daniele Giampaoli;Andrea Vian;Annalisa Barla\",\"doi\":\"10.1109/TETC.2023.3315954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines how geometric deep learning techniques may be employed to analyze academic collaboration networks (ACNs) and how using textual information drawn from publications improves the overall performance of the system. The proposed experimental pipeline was used to analyze the collaboration network of the Machine Learning Genoa Center (MaLGa) research group. First, we find the optimal method for embedding the input data graph and extracting meaningful keywords for the available publications. We then use Graph Neural Networks (GNN) for node type and research topic classification. Finally, we explore how the resulting corpus can be used to create a recommender system for optimal navigation of the ACN. Our results show that the GNN-based recommender system achieved high accuracy in suggesting unexplored nodes to users. Overall, this study demonstrates the potential for using geometric deep learning and Natural Language Processing (NLP) to best represent the scientific production of ACNs. In the future, we plan to incorporate the temporal nature of the data and navigation statistics of users exploring the graph as additional input for the recommender system.\",\"PeriodicalId\":13156,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computing\",\"volume\":\"12 3\",\"pages\":\"840-851\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10260272/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10260272/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Geometric Deep Learning Strategies for the Characterization of Academic Collaboration Networks
This paper examines how geometric deep learning techniques may be employed to analyze academic collaboration networks (ACNs) and how using textual information drawn from publications improves the overall performance of the system. The proposed experimental pipeline was used to analyze the collaboration network of the Machine Learning Genoa Center (MaLGa) research group. First, we find the optimal method for embedding the input data graph and extracting meaningful keywords for the available publications. We then use Graph Neural Networks (GNN) for node type and research topic classification. Finally, we explore how the resulting corpus can be used to create a recommender system for optimal navigation of the ACN. Our results show that the GNN-based recommender system achieved high accuracy in suggesting unexplored nodes to users. Overall, this study demonstrates the potential for using geometric deep learning and Natural Language Processing (NLP) to best represent the scientific production of ACNs. In the future, we plan to incorporate the temporal nature of the data and navigation statistics of users exploring the graph as additional input for the recommender system.
期刊介绍:
IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.