石墨烯对微波烧结Ti6Al6V2Sn/Gn复合材料摩擦学性能的影响

U.V. Akhil , N. Radhika , T. Ramkumar , Alokesh Pramanik
{"title":"石墨烯对微波烧结Ti6Al6V2Sn/Gn复合材料摩擦学性能的影响","authors":"U.V. Akhil ,&nbsp;N. Radhika ,&nbsp;T. Ramkumar ,&nbsp;Alokesh Pramanik","doi":"10.1016/j.ijlmm.2023.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Titanium alloys are widely used in various industrial applications due to their excellent properties. Due to its excellent heat conductivity and stability, graphene (Gn) can help Ti components last longer and experience less wear. In the current study, Ti6Al6V2Sn (Ti662) with various wt.% Gn was produced. The composite samples were subjected to metallurgical characterization to analyze the influence of Gn addition in the microstructure and phases formed. The properties such as microhardness and wear resistance were analyzed for all the samples. Variations in the load, sliding velocity, and distance were made during the wear test, and the effects of these factors on the wear rate and morphology of the worn surface were examined. Mechanical property analysis revealed that Ti662 + 0.5Gn exhibited the highest microhardness of 514.32HV, which was 1.45 times that of the matrix material. The sample with 0.5Gn exhibited increased wear resistance, the order of wear resistance observed was Ti662 + 0.5Gn &gt; Ti662 + 0.75Gn &gt; Ti662+1Gn &gt; Ti662 + 0.25Gn &gt; Ti662. The wear rate was reduced by 44.15 % at 40 N, 42.07 % and 52.02 % at 1.5 m/s and 2000 m for Ti662 + 0.5Gn composite. Worn surface morphology revealed that at elevated loads, abrasive and delamination wear was observed while at elevated velocity and distance, the formation of mechanically mixed layer (MML) was observed.</p></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":"7 1","pages":"Pages 1-13"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588840423000495/pdfft?md5=82f21c45c29f2bbe9a11e183bbf2f651&pid=1-s2.0-S2588840423000495-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of graphene on the tribological behavior of Ti6Al6V2Sn/Gn composite produced via microwave sintering\",\"authors\":\"U.V. Akhil ,&nbsp;N. Radhika ,&nbsp;T. Ramkumar ,&nbsp;Alokesh Pramanik\",\"doi\":\"10.1016/j.ijlmm.2023.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Titanium alloys are widely used in various industrial applications due to their excellent properties. Due to its excellent heat conductivity and stability, graphene (Gn) can help Ti components last longer and experience less wear. In the current study, Ti6Al6V2Sn (Ti662) with various wt.% Gn was produced. The composite samples were subjected to metallurgical characterization to analyze the influence of Gn addition in the microstructure and phases formed. The properties such as microhardness and wear resistance were analyzed for all the samples. Variations in the load, sliding velocity, and distance were made during the wear test, and the effects of these factors on the wear rate and morphology of the worn surface were examined. Mechanical property analysis revealed that Ti662 + 0.5Gn exhibited the highest microhardness of 514.32HV, which was 1.45 times that of the matrix material. The sample with 0.5Gn exhibited increased wear resistance, the order of wear resistance observed was Ti662 + 0.5Gn &gt; Ti662 + 0.75Gn &gt; Ti662+1Gn &gt; Ti662 + 0.25Gn &gt; Ti662. The wear rate was reduced by 44.15 % at 40 N, 42.07 % and 52.02 % at 1.5 m/s and 2000 m for Ti662 + 0.5Gn composite. Worn surface morphology revealed that at elevated loads, abrasive and delamination wear was observed while at elevated velocity and distance, the formation of mechanically mixed layer (MML) was observed.</p></div>\",\"PeriodicalId\":52306,\"journal\":{\"name\":\"International Journal of Lightweight Materials and Manufacture\",\"volume\":\"7 1\",\"pages\":\"Pages 1-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2588840423000495/pdfft?md5=82f21c45c29f2bbe9a11e183bbf2f651&pid=1-s2.0-S2588840423000495-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Lightweight Materials and Manufacture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588840423000495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lightweight Materials and Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588840423000495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

钛合金因其优异的性能而广泛应用于各种工业领域。由于其优异的导热性和稳定性,石墨烯(Gn)可以帮助Ti组件使用寿命更长,磨损更少。在本研究中,制备了具有不同wt % Gn的Ti6Al6V2Sn (Ti662)。对复合材料试样进行了金相表征,分析了添加Gn对复合材料显微组织和相形成的影响。分析了各试样的显微硬度和耐磨性等性能。在磨损试验中,对载荷、滑动速度和滑动距离的变化进行了研究,考察了这些因素对磨损率和磨损表面形貌的影响。力学性能分析表明,Ti662+0.5Gn的显微硬度最高,为514.32HV,是基体材料的1.45倍。添加0.5Gn的试样耐磨性提高,耐磨性的大小顺序为Ti662+0.5Gn > Ti662+0.75Gn > Ti662+1Gn > Ti662+0.25Gn > Ti662。Ti662+0.5Gn复合材料在40N时磨损率降低44.15%,在1.5m/s和2000m时磨损率分别降低42.07%和52.02%。磨损表面形貌表明,在高载荷下,出现磨粒磨损和脱层磨损;在高速度和高距离下,出现机械混合层(MML)形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of graphene on the tribological behavior of Ti6Al6V2Sn/Gn composite produced via microwave sintering

Titanium alloys are widely used in various industrial applications due to their excellent properties. Due to its excellent heat conductivity and stability, graphene (Gn) can help Ti components last longer and experience less wear. In the current study, Ti6Al6V2Sn (Ti662) with various wt.% Gn was produced. The composite samples were subjected to metallurgical characterization to analyze the influence of Gn addition in the microstructure and phases formed. The properties such as microhardness and wear resistance were analyzed for all the samples. Variations in the load, sliding velocity, and distance were made during the wear test, and the effects of these factors on the wear rate and morphology of the worn surface were examined. Mechanical property analysis revealed that Ti662 + 0.5Gn exhibited the highest microhardness of 514.32HV, which was 1.45 times that of the matrix material. The sample with 0.5Gn exhibited increased wear resistance, the order of wear resistance observed was Ti662 + 0.5Gn > Ti662 + 0.75Gn > Ti662+1Gn > Ti662 + 0.25Gn > Ti662. The wear rate was reduced by 44.15 % at 40 N, 42.07 % and 52.02 % at 1.5 m/s and 2000 m for Ti662 + 0.5Gn composite. Worn surface morphology revealed that at elevated loads, abrasive and delamination wear was observed while at elevated velocity and distance, the formation of mechanically mixed layer (MML) was observed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Lightweight Materials and Manufacture
International Journal of Lightweight Materials and Manufacture Engineering-Industrial and Manufacturing Engineering
CiteScore
9.90
自引率
0.00%
发文量
52
审稿时长
48 days
期刊最新文献
Editorial Board Editorial Board Modeling and investigation of combined processes of casting, rolling, and extrusion to produce electrical wire from alloys Al–Zr system Characteristics of phases and processing techniques of high entropy alloys Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1