Jinghan Cai, Junlei Qi, Yueyang Yang, Xinyue Zhang, Yuan-Hua Lin
{"title":"铌掺杂srtio3陶瓷的巨大介电常数和超低介电损耗","authors":"Jinghan Cai, Junlei Qi, Yueyang Yang, Xinyue Zhang, Yuan-Hua Lin","doi":"10.26599/jac.2023.9220815","DOIUrl":null,"url":null,"abstract":"Defect engineering has been applied to prepare materials with modifiable dielectric properties. SrTiNb<sub>x</sub>O<sub>3</sub> (x=0, 0.003, 0.006, 0.009, 0.012) ceramics were synthesized using the traditional solid-state reaction method and sintered in a reducing atmosphere. All samples show excellent dielectric properties with giant permittivity (>3.5×10<sup>4</sup>) and low dielectric loss (<0.01). SrTiNb<sub>0.003</sub>O<sub>3</sub> ceramic exhibits a colossal permittivity of 4.6×10<sup>4</sup> and an ultralow dielectric loss of 0.005 (1 kHz, room temperature) as well as great temperature stability in the range of -60~160℃. The mechanism of the presented CP properties is investigated by conducting XPS and analyzing activation energies. The results indicate that the introduction of Nb<sup>5+</sup> and the reducing sintering atmosphere together generated the formation of Ti<sup>3+</sup> and <em>V <sup>∙∙</sup><sub>O</sub></em>. These defects further form <em>Ti'<sub>Ti</sub>−</em><em>V <sup>∙∙</sup></em><sub>O</sub>−<em>Ti'<sub>Ti</sub></em> defect dipoles, contributing to the coexisting giant permittivity and low dielectric loss in STN ceramics.","PeriodicalId":14862,"journal":{"name":"Journal of Advanced Ceramics","volume":null,"pages":null},"PeriodicalIF":18.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Colossal permittivity and ultralow dielectric loss in Nb-doped SrTiO <sub>3</sub> ceramics\",\"authors\":\"Jinghan Cai, Junlei Qi, Yueyang Yang, Xinyue Zhang, Yuan-Hua Lin\",\"doi\":\"10.26599/jac.2023.9220815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Defect engineering has been applied to prepare materials with modifiable dielectric properties. SrTiNb<sub>x</sub>O<sub>3</sub> (x=0, 0.003, 0.006, 0.009, 0.012) ceramics were synthesized using the traditional solid-state reaction method and sintered in a reducing atmosphere. All samples show excellent dielectric properties with giant permittivity (>3.5×10<sup>4</sup>) and low dielectric loss (<0.01). SrTiNb<sub>0.003</sub>O<sub>3</sub> ceramic exhibits a colossal permittivity of 4.6×10<sup>4</sup> and an ultralow dielectric loss of 0.005 (1 kHz, room temperature) as well as great temperature stability in the range of -60~160℃. The mechanism of the presented CP properties is investigated by conducting XPS and analyzing activation energies. The results indicate that the introduction of Nb<sup>5+</sup> and the reducing sintering atmosphere together generated the formation of Ti<sup>3+</sup> and <em>V <sup>∙∙</sup><sub>O</sub></em>. These defects further form <em>Ti'<sub>Ti</sub>−</em><em>V <sup>∙∙</sup></em><sub>O</sub>−<em>Ti'<sub>Ti</sub></em> defect dipoles, contributing to the coexisting giant permittivity and low dielectric loss in STN ceramics.\",\"PeriodicalId\":14862,\"journal\":{\"name\":\"Journal of Advanced Ceramics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Ceramics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26599/jac.2023.9220815\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26599/jac.2023.9220815","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Colossal permittivity and ultralow dielectric loss in Nb-doped SrTiO 3 ceramics
Defect engineering has been applied to prepare materials with modifiable dielectric properties. SrTiNbxO3 (x=0, 0.003, 0.006, 0.009, 0.012) ceramics were synthesized using the traditional solid-state reaction method and sintered in a reducing atmosphere. All samples show excellent dielectric properties with giant permittivity (>3.5×104) and low dielectric loss (<0.01). SrTiNb0.003O3 ceramic exhibits a colossal permittivity of 4.6×104 and an ultralow dielectric loss of 0.005 (1 kHz, room temperature) as well as great temperature stability in the range of -60~160℃. The mechanism of the presented CP properties is investigated by conducting XPS and analyzing activation energies. The results indicate that the introduction of Nb5+ and the reducing sintering atmosphere together generated the formation of Ti3+ and V ∙∙O. These defects further form Ti'Ti−V ∙∙O−Ti'Ti defect dipoles, contributing to the coexisting giant permittivity and low dielectric loss in STN ceramics.
期刊介绍:
Journal of Advanced Ceramics is a single-blind peer-reviewed, open access international journal published on behalf of the State Key Laboratory of New Ceramics and Fine Processing (Tsinghua University, China) and the Advanced Ceramics Division of the Chinese Ceramic Society.
Journal of Advanced Ceramics provides a forum for publishing original research papers, rapid communications, and commissioned reviews relating to advanced ceramic materials in the forms of particulates, dense or porous bodies, thin/thick films or coatings and laminated, graded and composite structures.