Cu2O太阳能电池研究进展

IF 1.9 4区 工程技术 Q4 ENERGY & FUELS Journal of Renewable and Sustainable Energy Pub Date : 2023-11-01 DOI:10.1063/5.0167383
Sinuo Chen, Lichun Wang, Chunlan Zhou, Jinli Yang
{"title":"Cu2O太阳能电池研究进展","authors":"Sinuo Chen, Lichun Wang, Chunlan Zhou, Jinli Yang","doi":"10.1063/5.0167383","DOIUrl":null,"url":null,"abstract":"Cu2O-based solar cells offer a promising solution to address future energy challenges due to their affordability, eco-friendliness, and impressive power conversion efficiency (PCE). With the development of thin film deposition technology, the maximum PCE of single-junction solar cells fabricated based on Cu2O is 9.5%. Because the spectral sensitivity overlaps between Cu2O and crystalline silicon (c-Si) is small, Cu2O thin-film solar cells can be made into tandem solar cells with Si-based solar cells to achieve higher PCE. The Cu2O–Si tandem solar cell has been delivered 24.2% PCE in 2020, a time when the PCE of stand-alone silicon solar cells was 17.6%. The purpose of this paper is to summarize the development of Cu2O-based heterojunction, homojunction. The Cu2O material properties, n and p-type doping, the role of defects and impurities in bulk of films or at the interface of the p–n-junction and n-type buffer layer on the performance of Cu2O-based heterojunction like ZnO–Cu2O, and the difficulty in decreasing the interface state and doping in Cu2O homojunction solar cells are discussed. This review discusses the Cu2O film material preparation method, the history of Cu2O based solar cells, the essential factors required to enhance the performance of various types of Cu2O-based solar cells, and the potential future research opportunities for as a top subcells in Cu2O–Si tandem solar cells.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of Cu2O solar cell\",\"authors\":\"Sinuo Chen, Lichun Wang, Chunlan Zhou, Jinli Yang\",\"doi\":\"10.1063/5.0167383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cu2O-based solar cells offer a promising solution to address future energy challenges due to their affordability, eco-friendliness, and impressive power conversion efficiency (PCE). With the development of thin film deposition technology, the maximum PCE of single-junction solar cells fabricated based on Cu2O is 9.5%. Because the spectral sensitivity overlaps between Cu2O and crystalline silicon (c-Si) is small, Cu2O thin-film solar cells can be made into tandem solar cells with Si-based solar cells to achieve higher PCE. The Cu2O–Si tandem solar cell has been delivered 24.2% PCE in 2020, a time when the PCE of stand-alone silicon solar cells was 17.6%. The purpose of this paper is to summarize the development of Cu2O-based heterojunction, homojunction. The Cu2O material properties, n and p-type doping, the role of defects and impurities in bulk of films or at the interface of the p–n-junction and n-type buffer layer on the performance of Cu2O-based heterojunction like ZnO–Cu2O, and the difficulty in decreasing the interface state and doping in Cu2O homojunction solar cells are discussed. This review discusses the Cu2O film material preparation method, the history of Cu2O based solar cells, the essential factors required to enhance the performance of various types of Cu2O-based solar cells, and the potential future research opportunities for as a top subcells in Cu2O–Si tandem solar cells.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0167383\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0167383","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

基于cu20的太阳能电池由于其可负担性,环保性和令人印象深刻的功率转换效率(PCE),为解决未来的能源挑战提供了一个有前途的解决方案。随着薄膜沉积技术的发展,基于Cu2O的单结太阳能电池的最大PCE可达9.5%。由于Cu2O与晶体硅(c-Si)之间的光谱灵敏度重叠较小,Cu2O薄膜太阳能电池可以与硅基太阳能电池制成串联太阳能电池,以获得更高的PCE, 2020年Cu2O - si串联太阳能电池的PCE为24.2%,而独立硅太阳能电池的PCE为17.6%。本文综述了近年来cu20基异质结、同质结的研究进展。讨论了Cu2O材料性质、n型和p型掺杂、薄膜本体或p- n结和n型缓冲层界面缺陷和杂质对ZnO-Cu2O等Cu2O基异质结性能的影响,以及在Cu2O同质结太阳能电池中降低界面状态和掺杂的困难。本文综述了Cu2O薄膜材料的制备方法、Cu2O基太阳能电池的发展历史、提高各类Cu2O基太阳能电池性能所需的关键因素,以及作为Cu2O- si串联太阳能电池的顶级亚电池的潜在未来研究机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review of Cu2O solar cell
Cu2O-based solar cells offer a promising solution to address future energy challenges due to their affordability, eco-friendliness, and impressive power conversion efficiency (PCE). With the development of thin film deposition technology, the maximum PCE of single-junction solar cells fabricated based on Cu2O is 9.5%. Because the spectral sensitivity overlaps between Cu2O and crystalline silicon (c-Si) is small, Cu2O thin-film solar cells can be made into tandem solar cells with Si-based solar cells to achieve higher PCE. The Cu2O–Si tandem solar cell has been delivered 24.2% PCE in 2020, a time when the PCE of stand-alone silicon solar cells was 17.6%. The purpose of this paper is to summarize the development of Cu2O-based heterojunction, homojunction. The Cu2O material properties, n and p-type doping, the role of defects and impurities in bulk of films or at the interface of the p–n-junction and n-type buffer layer on the performance of Cu2O-based heterojunction like ZnO–Cu2O, and the difficulty in decreasing the interface state and doping in Cu2O homojunction solar cells are discussed. This review discusses the Cu2O film material preparation method, the history of Cu2O based solar cells, the essential factors required to enhance the performance of various types of Cu2O-based solar cells, and the potential future research opportunities for as a top subcells in Cu2O–Si tandem solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Renewable and Sustainable Energy
Journal of Renewable and Sustainable Energy ENERGY & FUELS-ENERGY & FUELS
CiteScore
4.30
自引率
12.00%
发文量
122
审稿时长
4.2 months
期刊介绍: The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields. Topics covered include: Renewable energy economics and policy Renewable energy resource assessment Solar energy: photovoltaics, solar thermal energy, solar energy for fuels Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics Bioenergy: biofuels, biomass conversion, artificial photosynthesis Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation Power distribution & systems modeling: power electronics and controls, smart grid Energy efficient buildings: smart windows, PV, wind, power management Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies Energy storage: batteries, supercapacitors, hydrogen storage, other fuels Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other Marine and hydroelectric energy: dams, tides, waves, other Transportation: alternative vehicle technologies, plug-in technologies, other Geothermal energy
期刊最新文献
Environmental and performance impacts of 2-ethylhexyl nitrate and ethanol in diesel blends: A comprehensive study Assessing rural energy poverty and early warning based on long-run evolution for clean energy transition in China Impact of photovoltaic power generation on poverty alleviation in Jiangsu, China Multi-site solar irradiance prediction based on hybrid spatiotemporal graph neural network Enhancing biomethane yield from food waste through surfactant-assisted mechanical pretreatment: An optimization approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1