Xiu Li Wang, Ru Qing Xu, Jian Hong Zhang, Fu Shuan Wen, Chang Qing Liu
{"title":"风电光伏系统混合储能优化容量分配及经济性评价","authors":"Xiu Li Wang, Ru Qing Xu, Jian Hong Zhang, Fu Shuan Wen, Chang Qing Liu","doi":"10.1063/5.0165774","DOIUrl":null,"url":null,"abstract":"During the global energy crisis, a significant influx of renewable energy sources was connected to the power grid, resulting in adverse fluctuations. To address this challenge and simultaneously reduce environmental pollution, a hybrid energy storage system containing hydrogen energy storage (HES) and compressed air energy storage (CAES) are proposed. The system aims to reconfigure the energy storage devices by an economical means and effectively alleviate the volatility challenges by the large amount of renewable energy accessing. First, according to the behavioral characteristics of wind, photovoltaics, and the energy storage, the hybrid energy storage capacity optimization allocation model is established, and its economy is nearly 17% and 4.7% better than that of single HES and single CAES, respectively. Then, considering the difficulty of solving the complexity dimension, a carnivorous plant algorithm (CPA) is adopted to solve the model and accurately obtain the strategy of hybrid energy storage configuration in this paper. The running time of a CPA algorithm is 33.6%, 36%, and 55% shorter than particle swarm optimization, whale optimization algorithm, and firefly algorithm, respectively. Finally, the simulation analysis is performed by IEEE 33 node arithmetic. The results show that the network loss with hybrid energy storage is reduced by about 40% compared with that without hybrid energy storage. However, improving voltage stability and the economy is optimal by using configured hybrid energy storage.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":"10 4","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal capacity allocation and economic evaluation of hybrid energy storage in a wind–photovoltaic power system\",\"authors\":\"Xiu Li Wang, Ru Qing Xu, Jian Hong Zhang, Fu Shuan Wen, Chang Qing Liu\",\"doi\":\"10.1063/5.0165774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the global energy crisis, a significant influx of renewable energy sources was connected to the power grid, resulting in adverse fluctuations. To address this challenge and simultaneously reduce environmental pollution, a hybrid energy storage system containing hydrogen energy storage (HES) and compressed air energy storage (CAES) are proposed. The system aims to reconfigure the energy storage devices by an economical means and effectively alleviate the volatility challenges by the large amount of renewable energy accessing. First, according to the behavioral characteristics of wind, photovoltaics, and the energy storage, the hybrid energy storage capacity optimization allocation model is established, and its economy is nearly 17% and 4.7% better than that of single HES and single CAES, respectively. Then, considering the difficulty of solving the complexity dimension, a carnivorous plant algorithm (CPA) is adopted to solve the model and accurately obtain the strategy of hybrid energy storage configuration in this paper. The running time of a CPA algorithm is 33.6%, 36%, and 55% shorter than particle swarm optimization, whale optimization algorithm, and firefly algorithm, respectively. Finally, the simulation analysis is performed by IEEE 33 node arithmetic. The results show that the network loss with hybrid energy storage is reduced by about 40% compared with that without hybrid energy storage. However, improving voltage stability and the economy is optimal by using configured hybrid energy storage.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":\"10 4\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0165774\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0165774","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Optimal capacity allocation and economic evaluation of hybrid energy storage in a wind–photovoltaic power system
During the global energy crisis, a significant influx of renewable energy sources was connected to the power grid, resulting in adverse fluctuations. To address this challenge and simultaneously reduce environmental pollution, a hybrid energy storage system containing hydrogen energy storage (HES) and compressed air energy storage (CAES) are proposed. The system aims to reconfigure the energy storage devices by an economical means and effectively alleviate the volatility challenges by the large amount of renewable energy accessing. First, according to the behavioral characteristics of wind, photovoltaics, and the energy storage, the hybrid energy storage capacity optimization allocation model is established, and its economy is nearly 17% and 4.7% better than that of single HES and single CAES, respectively. Then, considering the difficulty of solving the complexity dimension, a carnivorous plant algorithm (CPA) is adopted to solve the model and accurately obtain the strategy of hybrid energy storage configuration in this paper. The running time of a CPA algorithm is 33.6%, 36%, and 55% shorter than particle swarm optimization, whale optimization algorithm, and firefly algorithm, respectively. Finally, the simulation analysis is performed by IEEE 33 node arithmetic. The results show that the network loss with hybrid energy storage is reduced by about 40% compared with that without hybrid energy storage. However, improving voltage stability and the economy is optimal by using configured hybrid energy storage.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy