F. S. Mozer, O. Agapitov, S. D. Bale, R. Livi, O. Romeo, K. Sauer, I. Y. Vasko, J. Verniero
{"title":"太阳风中的密度增强流","authors":"F. S. Mozer, O. Agapitov, S. D. Bale, R. Livi, O. Romeo, K. Sauer, I. Y. Vasko, J. Verniero","doi":"10.3847/2041-8213/ad0721","DOIUrl":null,"url":null,"abstract":"Abstract This Letter describes a new phenomenon on the Parker Solar Probe of recurring plasma density enhancements that have Δ n/n ∼ 10% and that occur at a repetition rate of ∼5 Hz. They were observed sporadically for about 5 hr between 14 and 15 solar radii on Parker Solar Probe orbit 12 and they were also seen in the same radial range on both the inbound and outbound orbits 11. Their apparently steady-state existence suggests that their pressure gradient was balanced by the electric field. The X-component of the electric field component produced from this requirement is in good agreement with that measured. This provides strong evidence for the measurement accuracy of the density fluctuations and the X- and Y-components of the electric field (the Z-component was not measured). The electrostatic density waves were accompanied by an electromagnetic low-frequency wave, which occurred with the electrostatic harmonics. The amplitudes of these electrostatic and electromagnetic waves at ≥1 Hz were greater than the amplitude of the Alfvénic turbulence in their vicinity so they can be important for the heating, scattering, and acceleration of the plasma. The existence of this pair of waves is consistent with the observed plasma distributions and is explained as an oscilliton due to the nonlinear coupling between the kinetic Alfvén wave and the ion cyclotron mode, which belongs with the minor population of alpha particles.","PeriodicalId":55567,"journal":{"name":"Astrophysical Journal Letters","volume":"113 5","pages":"0"},"PeriodicalIF":8.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density Enhancement Streams in The Solar Wind\",\"authors\":\"F. S. Mozer, O. Agapitov, S. D. Bale, R. Livi, O. Romeo, K. Sauer, I. Y. Vasko, J. Verniero\",\"doi\":\"10.3847/2041-8213/ad0721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This Letter describes a new phenomenon on the Parker Solar Probe of recurring plasma density enhancements that have Δ n/n ∼ 10% and that occur at a repetition rate of ∼5 Hz. They were observed sporadically for about 5 hr between 14 and 15 solar radii on Parker Solar Probe orbit 12 and they were also seen in the same radial range on both the inbound and outbound orbits 11. Their apparently steady-state existence suggests that their pressure gradient was balanced by the electric field. The X-component of the electric field component produced from this requirement is in good agreement with that measured. This provides strong evidence for the measurement accuracy of the density fluctuations and the X- and Y-components of the electric field (the Z-component was not measured). The electrostatic density waves were accompanied by an electromagnetic low-frequency wave, which occurred with the electrostatic harmonics. The amplitudes of these electrostatic and electromagnetic waves at ≥1 Hz were greater than the amplitude of the Alfvénic turbulence in their vicinity so they can be important for the heating, scattering, and acceleration of the plasma. The existence of this pair of waves is consistent with the observed plasma distributions and is explained as an oscilliton due to the nonlinear coupling between the kinetic Alfvén wave and the ion cyclotron mode, which belongs with the minor population of alpha particles.\",\"PeriodicalId\":55567,\"journal\":{\"name\":\"Astrophysical Journal Letters\",\"volume\":\"113 5\",\"pages\":\"0\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ad0721\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad0721","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Abstract This Letter describes a new phenomenon on the Parker Solar Probe of recurring plasma density enhancements that have Δ n/n ∼ 10% and that occur at a repetition rate of ∼5 Hz. They were observed sporadically for about 5 hr between 14 and 15 solar radii on Parker Solar Probe orbit 12 and they were also seen in the same radial range on both the inbound and outbound orbits 11. Their apparently steady-state existence suggests that their pressure gradient was balanced by the electric field. The X-component of the electric field component produced from this requirement is in good agreement with that measured. This provides strong evidence for the measurement accuracy of the density fluctuations and the X- and Y-components of the electric field (the Z-component was not measured). The electrostatic density waves were accompanied by an electromagnetic low-frequency wave, which occurred with the electrostatic harmonics. The amplitudes of these electrostatic and electromagnetic waves at ≥1 Hz were greater than the amplitude of the Alfvénic turbulence in their vicinity so they can be important for the heating, scattering, and acceleration of the plasma. The existence of this pair of waves is consistent with the observed plasma distributions and is explained as an oscilliton due to the nonlinear coupling between the kinetic Alfvén wave and the ion cyclotron mode, which belongs with the minor population of alpha particles.
期刊介绍:
The Astrophysical Journal Letters (ApJL) is widely regarded as the foremost journal for swiftly disseminating groundbreaking astronomical research. It focuses on concise reports that highlight pivotal advancements in the field of astrophysics. By prioritizing timeliness and the generation of immediate interest among researchers, ApJL showcases articles featuring novel discoveries and critical findings that have a profound effect on the scientific community. Moreover, ApJL ensures that published articles are comprehensive in their scope, presenting context that can be readily comprehensible to scientists who may not possess expertise in the specific disciplines covered.