在苛刻的温度和压力条件下,空位和空隙缺陷对钨的组织和力学行为的影响

IF 1.3 Q4 NANOSCIENCE & NANOTECHNOLOGY Nanoscience and Technology-An International Journal Pub Date : 2023-01-01 DOI:10.1615/nanoscitechnolintj.2023050784
Amir Alivaliollahi, Ghasem Alahyarizadeh, AbdolHamid Minuchehr
{"title":"在苛刻的温度和压力条件下,空位和空隙缺陷对钨的组织和力学行为的影响","authors":"Amir Alivaliollahi, Ghasem Alahyarizadeh, AbdolHamid Minuchehr","doi":"10.1615/nanoscitechnolintj.2023050784","DOIUrl":null,"url":null,"abstract":": The body-centered cubic transition metal tungsten is frequently used as a pressure calibration material at high temperatures and pressures due to its outstanding mechanical and thermal properties. In this study, molecular dynamics simulations were performed to investigate the behavior of tungsten under harsh temperature and pressure conditions and the impact of fundamental defects, particularly vacancies, and voids, on its physical, structural, and mechanical properties through their correlation with elastic constants. The study also covered mechanical stability, elastic properties, brittleness and ductility, and hardness. The simulations utilized two different embedded atom methods and one modified embedded atom method interatomic potentials. The results show that the fundamental structural characteristics and properties of pure tungsten crystal, including lattice constant, density, cohesive and vacancy formation energies, elastic constants, and moduli in the ground state for all three potentials, are in good agreement with previous experimental and theoretical calculations and results. The calculated results demonstrate that the elastic constants-related properties for defective structures also have the same trend as the perfect crystal. The presence of defects in the crystal causes a decrease in properties at all temperatures and pressures, directly correlated to the fraction of crystal defects. As the percentage of vacancies increases, a further reduction in the elastic constants is observed. Likewise, these findings reveal that the presence of scattered vacancies in the crystal structure causes a more significant decrease in the substance's properties than","PeriodicalId":51672,"journal":{"name":"Nanoscience and Technology-An International Journal","volume":"13 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of vacancies and voids defects on the structural and mechanical behavior of tungsten under harsh temperature and pressure conditions\",\"authors\":\"Amir Alivaliollahi, Ghasem Alahyarizadeh, AbdolHamid Minuchehr\",\"doi\":\"10.1615/nanoscitechnolintj.2023050784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The body-centered cubic transition metal tungsten is frequently used as a pressure calibration material at high temperatures and pressures due to its outstanding mechanical and thermal properties. In this study, molecular dynamics simulations were performed to investigate the behavior of tungsten under harsh temperature and pressure conditions and the impact of fundamental defects, particularly vacancies, and voids, on its physical, structural, and mechanical properties through their correlation with elastic constants. The study also covered mechanical stability, elastic properties, brittleness and ductility, and hardness. The simulations utilized two different embedded atom methods and one modified embedded atom method interatomic potentials. The results show that the fundamental structural characteristics and properties of pure tungsten crystal, including lattice constant, density, cohesive and vacancy formation energies, elastic constants, and moduli in the ground state for all three potentials, are in good agreement with previous experimental and theoretical calculations and results. The calculated results demonstrate that the elastic constants-related properties for defective structures also have the same trend as the perfect crystal. The presence of defects in the crystal causes a decrease in properties at all temperatures and pressures, directly correlated to the fraction of crystal defects. As the percentage of vacancies increases, a further reduction in the elastic constants is observed. Likewise, these findings reveal that the presence of scattered vacancies in the crystal structure causes a more significant decrease in the substance's properties than\",\"PeriodicalId\":51672,\"journal\":{\"name\":\"Nanoscience and Technology-An International Journal\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscience and Technology-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/nanoscitechnolintj.2023050784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscience and Technology-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/nanoscitechnolintj.2023050784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

体心立方过渡金属钨由于其优异的机械和热性能,经常被用作高温和高压下的压力校准材料。在本研究中,通过分子动力学模拟研究了钨在恶劣温度和压力条件下的行为,以及基本缺陷,特别是空位和空隙,通过它们与弹性常数的相关性对其物理、结构和力学性能的影响。研究还包括机械稳定性、弹性性能、脆性和延展性以及硬度。模拟采用了两种不同的嵌入原子方法和一种改进的嵌入原子方法。结果表明,纯钨晶体的晶格常数、密度、内聚能和空位形成能、弹性常数以及基态三种势的模量等基本结构特征和性质与前人的实验和理论计算结果一致。计算结果表明,缺陷晶体的弹性常数相关性质与完美晶体的弹性常数相关性质具有相同的趋势。晶体中缺陷的存在导致在所有温度和压力下性能的下降,这与晶体缺陷的比例直接相关。随着空位百分比的增加,观察到弹性常数进一步降低。同样,这些发现揭示了晶体结构中分散空位的存在导致物质性能的显著下降
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of vacancies and voids defects on the structural and mechanical behavior of tungsten under harsh temperature and pressure conditions
: The body-centered cubic transition metal tungsten is frequently used as a pressure calibration material at high temperatures and pressures due to its outstanding mechanical and thermal properties. In this study, molecular dynamics simulations were performed to investigate the behavior of tungsten under harsh temperature and pressure conditions and the impact of fundamental defects, particularly vacancies, and voids, on its physical, structural, and mechanical properties through their correlation with elastic constants. The study also covered mechanical stability, elastic properties, brittleness and ductility, and hardness. The simulations utilized two different embedded atom methods and one modified embedded atom method interatomic potentials. The results show that the fundamental structural characteristics and properties of pure tungsten crystal, including lattice constant, density, cohesive and vacancy formation energies, elastic constants, and moduli in the ground state for all three potentials, are in good agreement with previous experimental and theoretical calculations and results. The calculated results demonstrate that the elastic constants-related properties for defective structures also have the same trend as the perfect crystal. The presence of defects in the crystal causes a decrease in properties at all temperatures and pressures, directly correlated to the fraction of crystal defects. As the percentage of vacancies increases, a further reduction in the elastic constants is observed. Likewise, these findings reveal that the presence of scattered vacancies in the crystal structure causes a more significant decrease in the substance's properties than
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
23.10%
发文量
20
期刊最新文献
Hydromagnetic pulsating flow of a blood Al2O3+CuO hybrid nanofluid in a porous channel with thermal radiation Jeffery-Hamel Flow in Conducting Nanofluid: Non-Darcy model Experimental assessments on the strain concentration around small-sized holes in PMMA A micro approach to validate the Gurson yield criteria at macro level On control of velocity of growth of films during magnetron sputtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1