{"title":"基于伊拉克家庭15位点STR的亲子鉴定深度神经网络模型","authors":"Donya A. Khalid, Nasser Nafea","doi":"10.1515/jisys-2023-0041","DOIUrl":null,"url":null,"abstract":"Abstract Paternity testing using a deoxyribose nucleic acid (DNA) profile is an essential branch of forensic science, and DNA short tandem repeat (STR) is usually used for this purpose. Nowadays, in third-world countries, conventional kinship analysis techniques used in forensic investigations result in inadequate accuracy measurements, especially when dealing with large human STR datasets; they compare human profiles manually so that the number of samples is limited due to the required human efforts and time consumption. By utilizing automation made possible by AI, forensic investigations are conducted more efficiently, saving both time conception and cost. In this article, we propose a new algorithm for predicting paternity based on the 15-loci STR-DNA datasets using a deep neural network (DNN), where comparisons among many human profiles are held regardless of the limitation of the number of samples. For the purpose of paternity testing, familial data are artificially created based on the real data of individual Iraqi people from Al-Najaf province. Such action helps to overcome the shortage of Iraqi data due to restricted policies and the secrecy of familial datasets. About 53,530 datasets are used in the proposed DNN model for the purpose of training and testing. The Keras library based on Python is used to implement and test the proposed system, as well as the confusion matrix and receiver operating characteristic curve for system evaluation. The system shows excellent accuracy of 99.6% in paternity tests, which is the highest accuracy compared to the existing works. This system shows a good attempt at testing paternity based on a technique of artificial intelligence.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"32 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep neural network model for paternity testing based on 15-loci STR for Iraqi families\",\"authors\":\"Donya A. Khalid, Nasser Nafea\",\"doi\":\"10.1515/jisys-2023-0041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Paternity testing using a deoxyribose nucleic acid (DNA) profile is an essential branch of forensic science, and DNA short tandem repeat (STR) is usually used for this purpose. Nowadays, in third-world countries, conventional kinship analysis techniques used in forensic investigations result in inadequate accuracy measurements, especially when dealing with large human STR datasets; they compare human profiles manually so that the number of samples is limited due to the required human efforts and time consumption. By utilizing automation made possible by AI, forensic investigations are conducted more efficiently, saving both time conception and cost. In this article, we propose a new algorithm for predicting paternity based on the 15-loci STR-DNA datasets using a deep neural network (DNN), where comparisons among many human profiles are held regardless of the limitation of the number of samples. For the purpose of paternity testing, familial data are artificially created based on the real data of individual Iraqi people from Al-Najaf province. Such action helps to overcome the shortage of Iraqi data due to restricted policies and the secrecy of familial datasets. About 53,530 datasets are used in the proposed DNN model for the purpose of training and testing. The Keras library based on Python is used to implement and test the proposed system, as well as the confusion matrix and receiver operating characteristic curve for system evaluation. The system shows excellent accuracy of 99.6% in paternity tests, which is the highest accuracy compared to the existing works. This system shows a good attempt at testing paternity based on a technique of artificial intelligence.\",\"PeriodicalId\":46139,\"journal\":{\"name\":\"Journal of Intelligent Systems\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jisys-2023-0041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2023-0041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A deep neural network model for paternity testing based on 15-loci STR for Iraqi families
Abstract Paternity testing using a deoxyribose nucleic acid (DNA) profile is an essential branch of forensic science, and DNA short tandem repeat (STR) is usually used for this purpose. Nowadays, in third-world countries, conventional kinship analysis techniques used in forensic investigations result in inadequate accuracy measurements, especially when dealing with large human STR datasets; they compare human profiles manually so that the number of samples is limited due to the required human efforts and time consumption. By utilizing automation made possible by AI, forensic investigations are conducted more efficiently, saving both time conception and cost. In this article, we propose a new algorithm for predicting paternity based on the 15-loci STR-DNA datasets using a deep neural network (DNN), where comparisons among many human profiles are held regardless of the limitation of the number of samples. For the purpose of paternity testing, familial data are artificially created based on the real data of individual Iraqi people from Al-Najaf province. Such action helps to overcome the shortage of Iraqi data due to restricted policies and the secrecy of familial datasets. About 53,530 datasets are used in the proposed DNN model for the purpose of training and testing. The Keras library based on Python is used to implement and test the proposed system, as well as the confusion matrix and receiver operating characteristic curve for system evaluation. The system shows excellent accuracy of 99.6% in paternity tests, which is the highest accuracy compared to the existing works. This system shows a good attempt at testing paternity based on a technique of artificial intelligence.
期刊介绍:
The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.